已知数列an的前n项和为Sn,a1=2,a2=1,且点(Sn,S(n+1))在直线y=kx+2上1.求k的值 2.求证an为等比数列 3.记Tn为数列{Sn}的前n项和,求T5的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 15:24:53

已知数列an的前n项和为Sn,a1=2,a2=1,且点(Sn,S(n+1))在直线y=kx+2上1.求k的值 2.求证an为等比数列 3.记Tn为数列{Sn}的前n项和,求T5的值
已知数列an的前n项和为Sn,a1=2,a2=1,且点(Sn,S(n+1))在直线y=kx+2上
1.求k的值 2.求证an为等比数列 3.记Tn为数列{Sn}的前n项和,求T5的值

已知数列an的前n项和为Sn,a1=2,a2=1,且点(Sn,S(n+1))在直线y=kx+2上1.求k的值 2.求证an为等比数列 3.记Tn为数列{Sn}的前n项和,求T5的值
s1=a1=2
s2=a1+a2=2+1=3
点(S1,S2)在直线y=kx+2上
S2=S1k+2
3=2k+2
2k=1
k=1/2
y=x/2+2
S(n+1)=Sn/2+2
2S(n+1)=Sn+4
2S(n+1)-8=Sn-4
2[S(n+1)-4]=Sn-4
[S(n+1)-4]/[Sn-4]=1/2
所以Sn-4是以1/2公比的等数列
Sn-4=(S1-4)*(1/2)^(n-1)
Sn-4=(-2)*(1/2)^(n-1)
Sn-4=-(1/2)^(n-2)
Sn=4-(1/2)^(n-2)
S(n-1)=4-(1/2)^(n-3)
an=Sn-S(n-1)
=4-(1/2)^(n-2)-[4-(1/2)^(n-3)]
=(1/2)^(n-3)-(1/2)^(n-2)
=(1/2)^(n-3)-(1/2)*(1/2)^(n-3)
=(1/2)^(n-3)(1-1/2)
=(1/2)^(n-3)*1/2
=(1/2)^(n-2)
所以an是以1/2公比的等数列
T5=a1(1-q^5)/(1-q)
=2*[1-(1/2)^5]/(1-1/2)
=4*[1-(1/2)^5]
=4-4*1/32
=4-1/8
=31/8

数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列 已知数列{an}的前n项和为Sn,若a1=1/2,Sn=n^2an-n(n-1)求Sn,an 数列:已知数列{an}前 n项和为Sn,且a1=2,4Sn=ana(n+1).求数列{an}的通项公式. 已知Sn为数列的前n项和,a1=2,2Sn=(n+1)an+n-1,求数列an的通项公式 已知数列{an}的前n项和为Sn,又a1=2,nAn+1=sn+n(n+1),求数列{an}的通项公式 已知数列 an前n项和为Sn,a1=1,Sn=2a(n+1),求Sn 已知数列《an>的前n项和为sn,a1=2,na=sn,求s2011 已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an已知数列{an}a1=2前n项和为Sn 且满足Sn +Sn-1=3an 求数列{an}的通项公式an 已知数列{an}的前n项和为Sn,a1=1/2,且Sn=n^2An-n(n-1),求an 已知数列{an}中,a1=2,前n 项和为Sn,若Sn=n^2*an, 已知数列的前N项和为SN,A1=2,2sn的平方=2ansn-an(n≥2)求an和sn 已知数列An中,其前n项和为Sn,A1=1,且An+1=2Sn,求An的通项公式和Sn 已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列 数列{an}的前n项和为Sn,已知a1+2,Sn+1=Sn-2nSn+1Sn,求an紧急紧急!求救中!sos 已知数列{an} 的前n项和为sn,且an=sn *s(n-1)a1=2/9 求证:{1/sn}为等差 已知数列{an}的前n项和记为sn,且a1=2,an+1=sn+2.求数列an的通项公式. 数列:已知数列[An]前n项和为Sn a1=1 An+1=2Sn 求【An] 求【n-An]前n项和Sn数列:已知数列[an]前n项和为Sn,a1=1 ,a[n+1]=2Sn,求[an]通项,求[n-an]前n项和Sn.注:a[n+1]指a 的下标为n+1而不是以n为下标的a加上1. 已知数列{an}的前n项和为Sn,a1=1/2,Sn=n的平方*an,求a1,a2,