已知抛物线y=x+bx+c的对称轴为为X=-1与X轴交于点Ab顶点为M且S△MAB=2倍根号2求解析式如题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:55:18

已知抛物线y=x+bx+c的对称轴为为X=-1与X轴交于点Ab顶点为M且S△MAB=2倍根号2求解析式如题
已知抛物线y=x+bx+c的对称轴为为X=-1与X轴交于点Ab顶点为M且S△MAB=2倍根号2求解析式如题

已知抛物线y=x+bx+c的对称轴为为X=-1与X轴交于点Ab顶点为M且S△MAB=2倍根号2求解析式如题
对称轴x=-b/2=-1,所以b=2;抛物线与x轴有交点,说明x^2+bx+c=0有解,即x1+x2=-b/1=-2;x1*x2=c/1=c【韦达定理】根判别式说明4-4c>0,c<1S=1/2*lx1-x2l*h=2√2,h=将x为-1代入抛物线值=c-1,lx1-x2l=√[(x1+x2)^2-4x1x2]=√(4-4c),1/2*√(4-4c)*lc-1l=2√2,解得1-c=2,c=-1所以解析式为y=x^2+2x-1 追问: x=-b/2=-1不应该是-2A分之b吗 追问: subnotebook抄一抄 回答: 这是求 函数表 达式的问题. 题目: 抛物线 y=x+bx+c 的 对称轴 是直线 x=-1,与x轴交于A、B两点,顶点为M,且△MAB的面积 S=2√2,求 解析式 . 解答如下: 首先,为了表示方便,我们将 y 换成 f(x) ,即 f(x)=x+bx+c 1. 由对称轴知 -b/2=-1 ,得到 b=2; 2. 由于抛物线与x轴交于A、B两点,说明方程 f(x)=x+2x+c=0 有两个不同的根: 判别式 △=4-4c>0 ,则 c<1; 3. △MAB的面积知道,那么在△MAB中,以AB边为底,则 底边长 AB = |x1-x2| = √△ = √(4-4c) , 高为x=-1 时的 函数值 的 绝对值 |f(-1)| = 1-c; S = AB × |f(-1)| / 2 = 2√2 ,两边平方,即 (4-4c) (c-1) / 4 = 8 解得1-c = 2 ,c=-1 所以,所求的解析式为 y = x + 2x - 1 追问: 谢谢 回答: 同学,采纳哦 追问: 肯定还有奖赏 回答: 好好学习,考上大学,报效祖国

已知抛物线y=ax^2+bx+c的对称轴为x=2,且经过点(1,4),(5,0),则该抛物线的解析式为 已知抛物线y=ax^2+bx+c(a>0),对称轴为x=-1,与x轴的一个交点为(x,0),且0 已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=-1,与X轴的一个交点为(x1,0),且0 已知点A(2,5).b(4,5)是抛物线y=4x²+bx+c上的两点,则这条抛物线的对称轴为? 已知抛物线y=ax^2+bx+c的对称轴为直线x=2,函数最大值为-3,求a,c的值. 抛物线y=ax的平方+bx+c交x轴于A,B两点,交y轴于C点,对称轴为直线x=1,已知A(-1,0),C抛物线y=ax^2+bx+c交x轴于A、B两点,与y轴交于点C,已知抛物线的对称轴为x=1,B(3,0) 在抛物线的对称轴是否存抛物线y=ax^2+b 已知抛物线y=-2x²+bx的对称轴为直线x=1,则b=? 已知抛物线y=ax^2+bx+c的对称轴是直线x=1,且经过p(3,0),则a-b+c的值为多少? 已知抛物线y=ax^2+bx+c的对称轴是直线x=1,且经过p(3,0),则a-b+c的值为多少? 方程ax^2+bx+c=0的两根为-3,1则抛物线y=ax^2+bx+c的对称轴是已知关于x的一元二次方程ax^2+bx+c=3的一个根为2,且二次函数y=ax^2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标是 已知抛物线y=axx+bx+c的对称轴为x=1,且经过(0,4)和点(4,0)则a+b-c等于什么 已知抛物线y=ax^2+bx-1的对称轴为x=-1,最高点在直线y=2x+4上,求抛物线的解析式 抛物线y=x^2+bx+c的图像的对称轴x=1 这函数经过x轴3,次抛物线的表达式为 已知抛物线Y=AX^2+BX+C经过点(-2,-1),对称轴=-2,在X轴上截得的线段长为2,求其解析式 已知抛物线y=x²+bx+c交x轴于A(1,0)B(3,o)两点 交y轴于点C 其顶点为D 求b,c的值并写出抛物线的对称轴 如图,已知抛物线Y=X2+BX+C的对称轴为X=2 A.B在抛物线,且AB与经X轴平行,其中点A的坐标为(0.3 ) B的坐标为 已知关于x的一元二次方程ax平方+bx+c=3的一根为x=2,且二次函数y=ax平方+bx+c的对称轴是直线x=2,则抛物线的顶点坐标是. 已知抛物线y=ax^2+bx+c(a≠0)图像的对称轴为x=2,已知抛物线y=ax^2+bx+c(a≠0)图象的对称轴为x=2,并且经过点M(-1,0)和N(3,16)两点,求抛物线的解析式.