已知sin α-cos α=1/2 求sin³ α-cos³ α的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 04:30:24
已知sin α-cos α=1/2 求sin³ α-cos³ α的值
已知sin α-cos α=1/2 求sin³ α-cos³ α的值
已知sin α-cos α=1/2 求sin³ α-cos³ α的值
(sin α-cos α)^2=(sina)^2-2sinacosa+(cos)^2=1-2sinacosa=1/4
sinacosa=3/8
(sina)^3-(cosa)^3
=(sina-cosa)[(sina)^2+sinacosa+(cos)^2]
=1/2(1+sinacosa)
=1/2(1+3/8)=11/16
11/16
(sin α-cos α)^2=(sina)^2-2sinacosa+(cos)^2=1-2sinacosa=1/4
sinacosa=3/8
(sina)^3-(cosa)^3
=(sina-cosa)[(sina)^2+sinacosa+(cos)^2]
=1/2(1+sinacosa)
=1/2(1+3/8)=11/16