21、如图,点A、B、C在同一直线上,△ABD,△BCE都是等边三角形.(1)求证:AE=CD;(2)若M,N分别是AE,CD的中点,试判断△BMN的形状,并证明你的结论.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:01:29
21、如图,点A、B、C在同一直线上,△ABD,△BCE都是等边三角形.(1)求证:AE=CD;(2)若M,N分别是AE,CD的中点,试判断△BMN的形状,并证明你的结论.
21、如图,点A、B、C在同一直线上,△ABD,△BCE都是等边三角形.
(1)求证:AE=CD;
(2)若M,N分别是AE,CD的中点,试判断△BMN的形状,并证明你的结论.
21、如图,点A、B、C在同一直线上,△ABD,△BCE都是等边三角形.(1)求证:AE=CD;(2)若M,N分别是AE,CD的中点,试判断△BMN的形状,并证明你的结论.
一.
∵△ABD,△BCE都是等边三角形
∴DB=AB
EB=CB
∠DBA=∠EBC=60°
∴∠DBA+∠DBE=∠EBC+∠DBE
∴∠ABE=∠DBC
在∴∠ABE=∠DBC中
∵AB=DB
∠ABE=∠DBC
EB=CB
∴△ABE≌△DBC
∴AE=CD
二.利用(1)的结论可得BM=BN(全等三角形的对应中线相等),所以是等腰三角形
(1)证明△ABE≌△CBD即可(SAS)
(2)利用(1)的结论可得BM=BN(全等三角形的对应中线相等),所以是等腰三角形
(1)证明:∵△ABD、△BCE都是等边三角形,
∴AB=BD,BC=BE,∠ABD=∠CBE=60°,
∴∠ABD+∠DBE=∠DBE+∠CBE,即∠ABE=∠DBC,
在△ABE和△DBC中
∴△ABE≌△DBC(SAS),
∴AE=CD;
(2)△MBN是等边三角形,理由为:
证明:∵△ABE≌△DBC,
∴∠BAE=∠BDC....
全部展开
(1)证明:∵△ABD、△BCE都是等边三角形,
∴AB=BD,BC=BE,∠ABD=∠CBE=60°,
∴∠ABD+∠DBE=∠DBE+∠CBE,即∠ABE=∠DBC,
在△ABE和△DBC中
∴△ABE≌△DBC(SAS),
∴AE=CD;
(2)△MBN是等边三角形,理由为:
证明:∵△ABE≌△DBC,
∴∠BAE=∠BDC.
∵AE=CD,M、N分别是AE、CD的中点,
∴AM=DN,
在△ABM和△DBN中
∴△ABM≌△DBN(SAS),
∴BM=BN,∠ABM=∠DBN,
∴∠DBM+∠DBN=∠DBM+∠ABM=∠ABD=60°.
∴△MBN是等边三角形.
收起