已知椭圆的中心在原点,焦点在x轴上,它的一个焦点是F,M是椭圆上任意一点,|MF|的最大值与最小值的积为4,椭圆上存在着以直线l:y=x为对称轴的对称点M1和M2,且|M1M2|=4×根10/3,求椭圆的方程.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:08:11

已知椭圆的中心在原点,焦点在x轴上,它的一个焦点是F,M是椭圆上任意一点,|MF|的最大值与最小值的积为4,椭圆上存在着以直线l:y=x为对称轴的对称点M1和M2,且|M1M2|=4×根10/3,求椭圆的方程.
已知椭圆的中心在原点,焦点在x轴上,它的一个焦点是F,M是椭圆上任意一点,|MF|的最大值与最小值的积为4,椭圆上存在着以直线l:y=x为对称轴的对称点M1和M2,且|M1M2|=4×根10/3,求椭圆的方程.

已知椭圆的中心在原点,焦点在x轴上,它的一个焦点是F,M是椭圆上任意一点,|MF|的最大值与最小值的积为4,椭圆上存在着以直线l:y=x为对称轴的对称点M1和M2,且|M1M2|=4×根10/3,求椭圆的方程.
设所求方程:x²/a²+y²/b²=1
(a+c)(a-c)=4.b²=4
M1,M2在x+y=0上.代入椭圆方程得:(4+a²)x²=4a².
x=-y=±√(4a²/(a²+4))
|M1M2|=√[2[2√[4a²/(a²+4)]]³]=4√10/3.
a²=5
所求方程x²/5+y²/4=1.

已知椭圆的中心在坐标原点,焦点在X轴上,它的一个焦点为F,M是椭圆上的任意点,|MF|的最大值和最小值...已知椭圆的中心在坐标原点,焦点在X轴上,它的一个焦点为F,M是椭圆上的任意点,|MF|的最大 已知椭圆C的中心为直角坐标系原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1 已知椭圆C的中心已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的 已知椭圆的中心在原点,它在X轴上的一个焦点与短轴两端点连线互相垂直,此焦点和X轴上的较近端点的距离...已知椭圆的中心在原点,它在X轴上的一个焦点与短轴两端点连线互相垂直,此焦点和 已知椭圆的中心在原点,焦点在x轴上,离心率e=1/3,又知椭圆上一点M,它的横坐标等于右焦点的横坐标,纵坐标是4,求此椭圆的方程 已知椭圆c的中心在坐标原点,焦点在x轴上,椭圆上的点到焦点的距离最大3最小1,求椭 已知椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1 .求:已知椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分 已知椭圆C的中心xOy为直角坐标系的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1(1)求...已知椭圆C的中心xOy为直角坐标系的原点,焦点在x轴上,它的一个顶点到两个焦点的距 已知椭圆的中心在原点 焦点在x轴上,长,短轴长之比为2:1,若圆... 已知椭圆c的中心在坐标在原点,焦点在X轴上,离心率为1/2,它的一个顶点恰好是抛物线X^2=-12Y的焦点.求椭圆 已知椭圆C的中心在坐标原点,焦点在X轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1求:(1)椭圆的...已知椭圆C的中心在坐标原点,焦点在X轴上,椭圆C上的点到焦点距离的最大值为3,最小值为 已知椭圆C的中心在原点,焦点在X轴上 离心率是5/2倍根号5,它的一个顶点恰好是抛物线X^2=4y的焦点求椭圆C的标准方程 已知椭圆中心在原点,焦点在x轴上,离心率 e=2,它与直线x+y+1=0的交点为P、Q,且以PQ为直径的圆过原点,求椭圆方程. 已知椭圆中心在原点,它在x轴上的一个焦点与短轴两个端点的连线互相垂直,且此焦点和长轴上较近端点的距离是√10-√5,求椭圆的方程? 已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线Y=1/4X2的焦点,离心率为(2根号5)/5!求椭圆的标准方程; 椭圆直线题已知椭圆的中心为直角坐标系的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是3和1求:(1)该椭圆的方程(2)设F1,F2为该椭圆的焦点,过椭圆中心O任作一直线与椭圆交 已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为1 2 ,椭圆C上的点到焦点距离的最大值为3. (Ⅰ)求椭已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为 12,椭圆C上的点到焦点距离的最大 已知椭圆C的中心在坐标原点,焦点在x轴上,其左右焦点分别为F1,F2,短轴长为2√3,点P在椭圆C已知椭圆C的中心在坐标原点,焦点在x轴上,其左右焦点分别为F1,F2,短轴长为2√3,点P在椭圆C上,且满足三 已知中心在坐标原点 焦点在x轴上的一椭圆椭圆的中心在原点 焦点在x轴上,若椭圆的一个焦点将长轴分成两段的比例中项等于椭圆的焦距,又已知直线2X-Y-4=0被此椭圆所截得的弦长为4√5/3[](