1/2•1/k•1/(k+1)= 1/2(1/k - 1/(k+1))这是为啥(1/2)•(1/k)•(1/(k+1))= 1/2(1/k - 1/(k+1))这是为啥
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:06:28
1/2•1/k•1/(k+1)= 1/2(1/k - 1/(k+1))这是为啥(1/2)•(1/k)•(1/(k+1))= 1/2(1/k - 1/(k+1))这是为啥
1/2•1/k•1/(k+1)= 1/2(1/k - 1/(k+1))这是为啥
(1/2)•(1/k)•(1/(k+1))= 1/2(1/k - 1/(k+1))这是为啥
1/2•1/k•1/(k+1)= 1/2(1/k - 1/(k+1))这是为啥(1/2)•(1/k)•(1/(k+1))= 1/2(1/k - 1/(k+1))这是为啥
1/2*1/k*1/(k+1)=1/2*1/k[1--k/(k+1)]
=1/2*[1/k--1/(k+1)].
看懂了吗?先把1/(k+1)拆成两项的差1--k/(k+1),
然后用乘法分配律去乘 1/k*[1--k/(k+1)]=1/k--1/(k+1).
(1/2)•(1/k)•(1/(k+1))
= (1/2)•[(1/k)•(1/(k+1))]
=(1/2)•1/k(k+1)
=(1/2)•(1/K-1/k+1)
其实这个你可以按照公式记住,
以后运算会方便很多的。
过程给你咯
望采纳哈!~~~~~为神马1/(k(k+...
全部展开
(1/2)•(1/k)•(1/(k+1))
= (1/2)•[(1/k)•(1/(k+1))]
=(1/2)•1/k(k+1)
=(1/2)•(1/K-1/k+1)
其实这个你可以按照公式记住,
以后运算会方便很多的。
过程给你咯
望采纳哈!~~~~~
收起
1/k×1/k+1=1/k×(k+1)=1/k-1/k+1
然后再乘以1/2就行了