已知数列{An}是等差数列.A1=2,且存在数列{Bn}是等比数列.使得4^(A1-1)*4^(A2-1)*4^(A3-1).4^(An-1)=(Bn+1)^(An),则数列{Bn}的前N项和Sn=_________.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:21:42

已知数列{An}是等差数列.A1=2,且存在数列{Bn}是等比数列.使得4^(A1-1)*4^(A2-1)*4^(A3-1).4^(An-1)=(Bn+1)^(An),则数列{Bn}的前N项和Sn=_________.
已知数列{An}是等差数列.A1=2,且存在数列{Bn}是等比数列.使得4^(A1-1)*4^(A2-1)*4^(A3-1).4^(An-1)=(Bn+1)^(An),则数列{Bn}的前N项和Sn=_________.

已知数列{An}是等差数列.A1=2,且存在数列{Bn}是等比数列.使得4^(A1-1)*4^(A2-1)*4^(A3-1).4^(An-1)=(Bn+1)^(An),则数列{Bn}的前N项和Sn=_________.
an=a1+2a2+3a3.+(n-2)a(n-2)+(n-1)an-1 .n>1
a(n-1)=a1+2a2+...+(n-2)a(n-2) .n>2
an-a(n-1)=(n-1)a(n-1)
an=na(n-1)
an/a(n-1)=n .n>2
a3/a2=3
..
an/a(n-1)=n
左右分别相乘:
an/a2=3*4*...*n=n!/2
an=a2*n!/2
an=a1+2a2+3a3.+(n-1)an-1 (n>=2)
a2=a1=1
an=1*n!/2=n!/2
n=1时,不满足an
n=2时,满足an
所以an=1 n=1
an=n!/2 n>1
补充:注意n的变化

请问这个等差数列的公差告诉了吗?

已知数列{an}是等差数列,且a1=2,a1+a2+a3=12,求数列{an}的通向公式 已知数列an满足:an+1-2an=2^n+1,且a1=2 (1)证明{an/2^n}是等差数列 (2)求数列an的 已知数列{an}为等差数列,且a1=2,a1+a2+a3+=12,求证数列{bn}是等比数列令bn=3的an次方 已知数列{an}为等差数列,且a1=2,a1+a2+a3=12,令bn=3^an,求证,数列{bn}是等比数列 已知数列{An}为等差数列,且A1=2,A1+A2+A3=12.令Bn=3^(An),求证:数列{Bn}是等比数列 已知数列{an}是等差数列,且a1=1,a2+a3=8 求数列{an}的通项公式(2)该数列前十项的和S10 已知{an}是公差不为零的等差数列,a1=1且a1,a3,a9成等比数列,求数列{an}的通项公式及数列{2的an次方}...已知{an}是公差不为零的等差数列,a1=1且a1,a3,a9成等比数列,求数列{an}的通项公式及数列{2的an 已知数列an是等差数列,首项a1 已知数列(An)是等差数列,且a1=-1,S12=186,求数列(An)的通项公式.. 已知数列an是等差数列,且a1=1,a4=-27,求数列an的通项公式 已知数列an是等比数列,且a1,a2,a4成等差数列,求数列an的公比 已知数列{an}是等差数列,且bn=3an+1 1.求证:数列{bn}是等差数列 2.若a1=2,已知数列{an}是等差数列,且bn=3an+11.求证:数列{bn}是等差数列2.若a1=2,a5=-14.求{bn}的通项公式 已知数列{An}满足A1=1,An+1=2An+2^n.求证数列An/2是等差数列 已知数列{}是等差数列,且a1=2,a1+a2+a3=12,求数列{An}的通项公式及前n项和Sn 已知数列{an}是公差为2的等差数列,且a1,a2,a5成等比数列,则a2=_____ 已知数列{an}是等差数列,且a1-a4-a8-a12+a15=2,求a3+a13的值. 已知数列[an]满足An+1=1+an /3-an ,且a1=1/3,求证数列[1/(an -1)]是等差数列,并求an 已知数列{an}是等差数列,且a1=2,a1+a2+a3=12 令bn=an*3^n,求{bn}的前n项和