二次函数f(x)=x^2+2x-3的图像与两坐标轴有三个交点,求经过这三个交点的圆的方程.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 08:40:17
二次函数f(x)=x^2+2x-3的图像与两坐标轴有三个交点,求经过这三个交点的圆的方程.
二次函数f(x)=x^2+2x-3的图像与两坐标轴有三个交点,求经过这三个交点的圆的方程.
二次函数f(x)=x^2+2x-3的图像与两坐标轴有三个交点,求经过这三个交点的圆的方程.
.(1)令x=0,得抛物线与y轴交点是(0,b);
令f(x)=x²+2x+b=0,由题意b≠0且△>0,解得b<1且b≠0.
(2)设所求圆的一般方程为x²+y²+Dx+Ey+F=0
令y=0得x²+Dx+F=0这与x²+2x+b=0是同一个方程,故D=2,F=b.
令x=0得y²+Ey+F=0,方程有一个根为b,代入得出E=-b-1.
所以圆C的方程为x²+y²+2x-(b+1)y+b=0.
(3)圆C必过定点,证明如下:
假设圆C过定点(x0,y0)(x0,y0不依赖于b),将该点的坐标代入圆C的方程,
并变形为x0²+y0²+2x0-y0+b(1-y0)=0(*)
为使(*)式对所有满足b<1(b≠0)的b都成立,必须有1-y0=0,结合(*)式得
x0²+y0²+2x0-y0=0,
解得
{x0=0
y0=1
或{x0=-2
y0=1
PS 无论x0还是y0 0都要比xy写的小 就像x1 y1一样.
解题方法
(1)由题意知,由抛物线与坐标轴有三个交点可知抛物线不过原点即b不等于0,然后抛物线与x轴有两个交点即令f(x)=0的根的判别式大于0即可求出b的范围;
(2)设出圆的一般式方程,根据抛物线与坐标轴的交点坐标可知:令y=0得到与f(x)=0一样的方程;令x=0得到方程有一个根是b即可求出圆的方程;
(3)设圆的方程过定点(x0,y0),将其代入圆的方程得x0²+y0²+2x0-y0+b(1-y0)=0,因为x0,y0不依赖于b得取值,所以得到1-y0=0即y0=1,代入x0²+y0²+2x0-y0=0中即可求出定点的坐标.