(1+1/15)+(3+1/35)+(5+1/63)+(7+1/99)+(9+1/143)+(11+1/195)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:19:53
(1+1/15)+(3+1/35)+(5+1/63)+(7+1/99)+(9+1/143)+(11+1/195)
(1+1/15)+(3+1/35)+(5+1/63)+(7+1/99)+(9+1/143)+(11+1/195)
(1+1/15)+(3+1/35)+(5+1/63)+(7+1/99)+(9+1/143)+(11+1/195)
(1+3+5+7+9+11)+(1/3-1/5+1/5-1/7+1/7-1/9+...+1/13-1/15)=36+1/3-1/15=36+4/15
原式 = (1 + 3 + … + 11) + [1/(3*5) + 1/(5*7) + … 1/(13*15)]
1 + 3 + 5 + … + 2n-1 = n平方
1/[n*(n+)] = (1/2) (1/n - 1/(n+2))
原式 = 6(1 + 11)/2 + 1/2[1/3 - 1/5 + 1/5 -1/7 + … +1/13 -1/15]
= 36 + 1/2 * (1/3 - 1/15)= 36又 2/15
原式=(1+1/3-1/5)+(3+1/5-1/7)+……(11+1/13-1/15)
=(1+3+5+……+11)+(1/3-1/5+1/5-1/7……+1/13-1/15)
=12*6/2+(1/3-1/15)
=36+4/15
=36又4/15
(1+1/15)+(3+1/35)+(5+1/63)+(7+1/99)+(9+1/143)+(11+1/195)=1+3+5+7+9+11+1/3×1/5+。。。。1/13×1/15=1+3+5+7+9+11+1/2(1/3-1/5.。。。。。1/13-1/15)=542/15