m/(x+1)-n/(x+2)=1/(x+1)(x+2),mn为常数,求mn的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:27:19

m/(x+1)-n/(x+2)=1/(x+1)(x+2),mn为常数,求mn的值.
m/(x+1)-n/(x+2)=1/(x+1)(x+2),mn为常数,求mn的值.

m/(x+1)-n/(x+2)=1/(x+1)(x+2),mn为常数,求mn的值.
m/(x+1)-n/(x+2)=1/(x+1)(x+2)
[(m(x+2)-n(x+1)]/(x+1)(x+2))=1/(x+1)(x+2)
[(m-n)x+2m-n)]/(x+1)(x+2))=1/(x+1)(x+2)
(m-n)x+2m-n)=1
m-n=0,2m-n=1
m=n=1
mn=1

m/(x+1)-n/(x+2)=1/(x+1)(x+2)
(m(x+2)-n(x+1)/
(x+1)(x+2)) =1/(x+1)(x+2)
(m(x+2)-n(x+1)/
(x+1)(x+2)) =1/(x+1)(x+2)
(m(x+2)-n(x+1)/1
m-n=0,2m-n=1
m=n=1
mn=1