已知sinθ、cosθ是 关于x的方程x^2-ax+a=0的两个根.用不同的方法解下来答案不同?先韦达:sinθ+cosθ=a .sinθcosθ=a1.sin³θ+cos³θ=(sinθ+cosθ)(sin²θ-sinθcosθ+cos²θ)=a(1-a)=-a²+a2.sinθ*cosθ=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:16:47

已知sinθ、cosθ是 关于x的方程x^2-ax+a=0的两个根.用不同的方法解下来答案不同?先韦达:sinθ+cosθ=a .sinθcosθ=a1.sin³θ+cos³θ=(sinθ+cosθ)(sin²θ-sinθcosθ+cos²θ)=a(1-a)=-a²+a2.sinθ*cosθ=
已知sinθ、cosθ是 关于x的方程x^2-ax+a=0的两个根.用不同的方法解下来答案不同?
先韦达:sinθ+cosθ=a .sinθcosθ=a
1.
sin³θ+cos³θ
=(sinθ+cosθ)(sin²θ-sinθcosθ+cos²θ)
=a(1-a)
=-a²+a
2.
sinθ*cosθ=a
sinθ+cosθ=a
(sinθ)^3+(cosθ)^3=(sinθ+cosθ)^3-3sinθ*cosθ(sinθ+cosθ)
=a^3-3a^2
解下来之后.明显可得 a-a^2=a^3-3a^2
当a≠0时
可以解得 a=1±√2
为什么会这样. a^3-3a^2是不是能化简成a-a^2?

已知sinθ、cosθ是 关于x的方程x^2-ax+a=0的两个根.用不同的方法解下来答案不同?先韦达:sinθ+cosθ=a .sinθcosθ=a1.sin³θ+cos³θ=(sinθ+cosθ)(sin²θ-sinθcosθ+cos²θ)=a(1-a)=-a²+a2.sinθ*cosθ=
你忘记了一点
sinθ+cosθ=a .sinθcosθ=a
第一个平方得
1+2a=a^2
可见本来就可以解出来a的
也就是说,a^2是可以降次的
这样
a^3-3a^2=a^2(a-3)=(1+2a)(a-3)=2a^2+a-6a-3
=2(1+2a)-5a-3
=-a-1
=-2a-1+a
=-a^2+a
可见两者是完全相等的.