已知a-1的绝对值+ab-2的绝对值=0,求1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a+2005)(b+2005)的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:44:59
已知a-1的绝对值+ab-2的绝对值=0,求1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a+2005)(b+2005)的值
已知a-1的绝对值+ab-2的绝对值=0,求1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a+2005)(b+2005)的值
已知a-1的绝对值+ab-2的绝对值=0,求1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a+2005)(b+2005)的值
由已知a-1的绝对值+ab-2的绝对值=0
得a-1=0且ab-2=0
所以a=1 ab=2 b=2
设所求式1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a+2005)(b+2005)的第n项为An,可以看出,An=1/(a+n-1)(b+n-1)
=1/[ab+(n-1)(a+b)+(n-1)^2]
将a=1 ab=2 b=2代入上式
An=1/[2+3(n-1)+(n-1)^2]
=1/(n-1+2)(n-1+1)
=1/n(n+1)
=1/n-1/(n+1)
所以1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a+2005)(b+2005)
=1-1/2+1/2-1/3+……+1/2005-1/2006+1/2006-1/2007
=1-1/2007
=2006/2007
因la-1l+lab-2l=0
则a-1=0,ab-2=0
则a=1,b=2
则原式=1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a+2005)(b+2005)
=
绝对值是非负数,所以|a-1|=0,|ab-2|=0
∴a=1,b=2
原式=1/2+1/(2×3)+1/(3×4)+…+1(2006×2007)
=1/2+1/2-1/3+1/3-1/4+…+1/2006-1/2007
=1-1/2007=2006/2007