已知集合A={x∈R|x+3|+|x-4|≤9} B={x∈R|x=4t+t分之1,t∈(0,正无穷)则集合A∩B等于A:|x+3|+|x-4|≤9可以将-3、4看成两个分界点则分别在x≤-3、-3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:49:19
已知集合A={x∈R|x+3|+|x-4|≤9} B={x∈R|x=4t+t分之1,t∈(0,正无穷)则集合A∩B等于A:|x+3|+|x-4|≤9可以将-3、4看成两个分界点则分别在x≤-3、-3
已知集合A={x∈R|x+3|+|x-4|≤9} B={x∈R|x=4t+t分之1,t∈(0,正无穷)则集合A∩B等于
A:|x+3|+|x-4|≤9
可以将-3、4看成两个分界点
则分别在x≤-3、-3
已知集合A={x∈R|x+3|+|x-4|≤9} B={x∈R|x=4t+t分之1,t∈(0,正无穷)则集合A∩B等于A:|x+3|+|x-4|≤9可以将-3、4看成两个分界点则分别在x≤-3、-3
求B的时候使用的是均值不等式:对于正数a,b,(a+b)/2≥√ab
这个高二学不等式的时候会学
当T大于0时,X=4T+t/1-6≥2倍根号4-6=-2(运用均值不等式A+B≥2倍根号AB可得),当且仅当T=2/1时取等号,所以B={X∈R|X≥-2},故A∩B={-2≤x≤5}。(B的正确解法)
用的是均值不等式
对于正数a,b 恒有a+b≥2√(ab)
B中t大于0恒成立,所以4t+1/t≥2√(4tx1/t)=4
所以B={x|x≥4}
B={x∈R|x=4t+t分之1,t∈(0,正无穷),所以B的取值可以用基本不等式来算。
因为t∈(0,正无穷),所以(4t+t分之1)≥4。
已知集合A={x∈R/4≤x
·已知集合A={x∈Rㄧ2x-3/x+4
已知集合A={x∈Rㄧ2x-3/x+4
已知集合a={x属于R||x-4|
已知全集U=R,集合A=(x/x^2-4x+3
已知集合u=R 集合a={x丨x²+3x+2
已知集合A={x|x^2-3x+2=0,x∈R},B={x|0
已知集合A={y|y=2^|x| -1,x∈R},集合B={y|y=√-x²+2x+3 ,x∈R},则集合{x|x∈A且x不属于B}=
已知全集R,集合A={x|x≤-2或x≥3},集合B={x|x
已知全集U=R,集合A={x|x≤3},B={x|x
已知全集U=R,集合A={x|(x+2)|x-2|>3x,且x∈(-无穷,2)},集合B={x|-2
已知集合A={x∈R|x²-4ax+2a+6=0},B={x|x
已知2∈{x∈R▏x²+4a=0,a∈R}求集合A={x∈R│x²-3x+4a=0,a∈R}中所有元素
已知集合A={x∈R|1/2
已知集合A={x|x²-4ax+2a+6=0,x∈R},集合B={x|x
已知全集U=R,集合A={x|-4
已知全集U=R,集合A={X|-3
已知全集U=R,集合A={X|3