f(x)=|sinx|+|cosx|单调性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 01:21:17
f(x)=|sinx|+|cosx|单调性
f(x)=|sinx|+|cosx|单调性
f(x)=|sinx|+|cosx|单调性
f(x)=|sinx|+|cosx|
①x∈[2kπ,2kπ+π/2)时
f(x)=sinx+cosx=√2sin(x+π/4)
x+π/4∈[2kπ+π/4,2kπ+3π/4)
所以 f(x)在[2kπ,2kπ+π/4]上是单调递增的
在(2kπ+π/4,2kπ+π/2)上是单调递减的
当 x=2kπ+π/2时 f(x)=1
②x∈[2kπ+π/2,2kπ+π)时
f(x)=sinx-cosx=√2sin(x-π/4)
x-π/4∈[2kπ+π/4,2kπ+3π/4)
所以 f(x)在[2kπ+π/2,2kπ+3π/4)上是单调递增的
在[2kπ+3π/4,2kπ+π)上是单调递减的
f(2kπ+π)=1
③x∈[2kπ+π,2kπ+3π/2)时
f(x)=-sinx-cosx=-√2sin(x+π/4)
x+π/4∈[2kπ+5π/4,2kπ+7π/4)
所以 f(x)在[2kπ+π,2kπ+5π/4)上是单调递增的
在[2kπ+5π/4,2kπ+3π/2)上是单调递减的
f(2kπ+3π/2)=1
④x∈[2kπ+3π/2,2kπ+2π)
f(x)=-sinx+cosx=-√2sin(x-π/4)
x-π/4∈[2kπ+5π/4,2kπ+7π/4)
所以 f(x)在[2kπ+3π/2,2kπ+7π/4)上是单调递增的
在[2kπ+7π/4,2kπ+2π)上是单调递减的
f(2kπ+2π)=1
分类去掉绝对值,再提个根号2出来,就差不多可以了
f(x)=sinx(sinx-cosx)的单调区间
函数f(x)=sinx+cosx的单调递增区间
函数f(x)=sinx×cosx的单调递增区间
求f(x)=sinx-cosx的单调递减区间
f(x)=cosx-sinx的单调递减区间
f(x)=cosx-根号3sinx单调递减区间
已知函数f(x)=(sinx-cosx)sin2x/sinx,求f(x)单调减区间
f(x)=cosx(sinx-cosx)的单调增区间为
函数f(x)=sinx(sinx-cosx)的单调递减区间?
函数f(x)=2sinx(sinx+cosx)的单调增区间为
函数f(x)=(sinx+cosx)^2-2sinx的单调递增区间为
F(x)=(sinx一cosx)sin2x/sinx 单调减区间
已知 f(x)=cos^2x+sinx*cosx 求f(x)的单调区间
已知函数f(x)=2sinx(sinX+cosX),求f(x)的单调区间.画出f(x)的图象
f(x)=sinx(sinx>=cosx) =cosx(sinx
化简f(x)=(sinx-cosx)sinx
f(x)=(sinx-cosx)sin2x/sinx.求最小正周期和f(x)的单调增区间
求函数f(x)=(sinx+cosx)^2+2cos^2x的单调增区间