lim(1+1/2)+(1+2^2)(1+2^4)…(1+1/2^(2^(n-1))) n→∞lim(1+1/2)(1+1/2^2)(1+1/2^4)…(1+1/2^(2^(n-1))) n→∞

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:46:47

lim(1+1/2)+(1+2^2)(1+2^4)…(1+1/2^(2^(n-1))) n→∞lim(1+1/2)(1+1/2^2)(1+1/2^4)…(1+1/2^(2^(n-1))) n→∞
lim(1+1/2)+(1+2^2)(1+2^4)…(1+1/2^(2^(n-1))) n→∞
lim(1+1/2)(1+1/2^2)(1+1/2^4)…(1+1/2^(2^(n-1))) n→∞

lim(1+1/2)+(1+2^2)(1+2^4)…(1+1/2^(2^(n-1))) n→∞lim(1+1/2)(1+1/2^2)(1+1/2^4)…(1+1/2^(2^(n-1))) n→∞
给极限乘以一个(1-1/2),最后再除以它,就可以了,
原式=2lim(1-1/2)(1+1/2)(1+1/2^2)(1+1/2^4)…(1+1/2^(2^(n-1)))
=2lim[1-1/2^(2^n )] (n→∞)
=2

lim(1+1/2)+(1+2^2)(1+2^4)…(1+1/2^(2^(n-1))) n→∞
lim(1+1/2)(1+1/2^2)(1+1/2^4)…(1+1/2^(2^(n-1))) n→∞
给极限乘以一个(1-1/2),最后再除以它,就可以了,
原式=2lim(1-1/2)(1+1/2)(1+1/2^2)(1+1/2^4)…(1+1/2^(2^(n-1)))
=2lim[1-1/2^(2^n )] (n→∞)
=2