y=-1-4sinx-(cosx)^2的最大值和最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:23:47

y=-1-4sinx-(cosx)^2的最大值和最小值
y=-1-4sinx-(cosx)^2的最大值和最小值

y=-1-4sinx-(cosx)^2的最大值和最小值
y=-1-4sinx-(cosx)^2
=-1-4sinx-1+(sinx)^2
=(sinx)^2-4sinx-2
=[sinx-2]^2-6
y在[-1,1]上是减函数
当sinx=1时,有最小值:-5
当sinx=-1时,有最大值:3

y=-1-4sinx-(1-sin²x)
=sin²x-4sinx-2
=(sinx-2)²-6
-1<=sinx<=1
所以在对称轴sinx=2左边,开口向上
所以是减函数
所以
sinx=-1,y最大=3
sinx=1,y最小=-5