设函数fx=a(x-1/x)-lnx(1)当a=1时,求曲线y=fx在点(1,f(1))处的切线方程(2若函数y=fx在其定义域内为增函数,求实数a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:52:35

设函数fx=a(x-1/x)-lnx(1)当a=1时,求曲线y=fx在点(1,f(1))处的切线方程(2若函数y=fx在其定义域内为增函数,求实数a的取值范围
设函数fx=a(x-1/x)-lnx
(1)当a=1时,求曲线y=fx在点(1,f(1))处的切线方程
(2若函数y=fx在其定义域内为增函数,求实数a的取值范围

设函数fx=a(x-1/x)-lnx(1)当a=1时,求曲线y=fx在点(1,f(1))处的切线方程(2若函数y=fx在其定义域内为增函数,求实数a的取值范围
先得切点(1,0)   在对f(x)求导f'(x)=(x^2-x+1)/x^2     得斜率k=1
l  :y=x-1


求导得f'(x)=(ax^2-x+a)/x^2             定义域为(0,正无穷)
只要讨论分子g(x)=ax^2-x+a>0
a=0     不行
a<0   不行
a>0    对称轴x=1/2a.>0   △<=0   得a>1/2
综上:a>=1/2