如图,等腰Rt△AMN和正方形ABCD,连ME,ND.(1)如图(1),求证MB=DN,MB⊥DN;(2)将正方形ABCD绕C点旋转,C点正好落在MN上时,探究S△BMC与S△DCN的数量关系并证明.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:06:42
如图,等腰Rt△AMN和正方形ABCD,连ME,ND.(1)如图(1),求证MB=DN,MB⊥DN;(2)将正方形ABCD绕C点旋转,C点正好落在MN上时,探究S△BMC与S△DCN的数量关系并证明.
如图,等腰Rt△AMN和正方形ABCD,连ME,ND.
(1)如图(1),求证MB=DN,MB⊥DN;
(2)将正方形ABCD绕C点旋转,C点正好落在MN上时,探究S△BMC与S△DCN的数量关系并证明.
如图,等腰Rt△AMN和正方形ABCD,连ME,ND.(1)如图(1),求证MB=DN,MB⊥DN;(2)将正方形ABCD绕C点旋转,C点正好落在MN上时,探究S△BMC与S△DCN的数量关系并证明.
第二问我也在求答案
我在想怎么证AC平行于DN ABM全等MBC
(1)
∵△AMN是等腰直角三角形 ABCD为正方形
∴∠MAN=∠BAD
AM=AN AB=AD
∴∠MAN-∠BAN=∠BAD-∠BAN
即∠MAB=∠NAD
在△MAB与△NAD中
∵AM=AN
∠MAB=∠NAD
AB=AD
∴△MAB≌△NAD(SAS)
∴MB=DN ∠ANB=∠AND
∴∠AMB=∠DMN=45
∴∠MDN=180-∠AND-∠AMN-∠DMN
=180-(∠AMB+∠DMN)-∠ANM
=180-45-45=90
∴MB⊥DN
因为AB=BC,
MB=BM
证M,B,D共线(角CDN=45度,而MB⊥DN),
则角ABM=角MBC,
ABM全等MBC
所以角ACM=角DNC
AC平行于DN
∵Rt△AQP中,AQ/AP=1/√2 Rt△DAC中,AD/AC=1/√2 在△AQD和△设边长为a,过P作出现PE交BC于E,则PC=a*根号2-2根号2 因为CPE是等腰
恩恩地方