数列{an}的前n项和Sn=2^(n+1)-2,数列bn是首项为a1,公差为d的等差数列,且b1,b3,b9成等比数列,求数列an,bn的通项公式若cn=2/(n+1)bn,求数列cn的前n项和Tn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 15:22:16

数列{an}的前n项和Sn=2^(n+1)-2,数列bn是首项为a1,公差为d的等差数列,且b1,b3,b9成等比数列,求数列an,bn的通项公式若cn=2/(n+1)bn,求数列cn的前n项和Tn
数列{an}的前n项和Sn=2^(n+1)-2,数列bn是首项为a1,公差为d的等差数列,且b1,b3,b9成等比数列,求数列an,bn的通项公式
若cn=2/(n+1)bn,求数列cn的前n项和Tn

数列{an}的前n项和Sn=2^(n+1)-2,数列bn是首项为a1,公差为d的等差数列,且b1,b3,b9成等比数列,求数列an,bn的通项公式若cn=2/(n+1)bn,求数列cn的前n项和Tn
因为数列{an}的前n项和为Sn=2^(n+1)–2,所以Sn-1=2^n–2而an=Sn-Sn-1所以an=2^n因为b1=a1=2 且b1,b3,b11为等比数列.所以2(2+10d)=(2+2d)^2得d=3所以bn=3n-1
cn=3/[bnb(n+1)]=3/[(3n-2)(3(n+1)-2)]=3/[(3n-2)(3n+1)]=3×(1/3)×[1/(3n-2)-1/(3n+1)]=1/(3n-2)-1/[3(n+1)-2]Tn=c1+c2+...+cn=1/(3×1-2)-1/(3×2-2)+1/(3×2-2)-1/(3×3-2)+...+1/(3n-2)-1/[3(n+1)-2]=1/(3×1-2) -1/[3(n+1)-2]=1 -1/(3n+1)

①当n>1时sn-s(n-1)=an,当n=1时sn=an。结果an=2^n
②(b1+2d)²=b1(b1+8d),算出b1=d=a1=2,bn=2n
cn=1/n(n+1)=1/n-1/(n+1)