英语翻译By comparison,optimized atomic-scale hole doping in the p-type PbTe can lead to a maximum ZT value of \x021.1 at 775 K in Pb0.98Na0.02Te,and the ZT value further increases to \x021.7 at 800 K after introducingnanostructures.17 For the n-t
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 03:52:11
英语翻译By comparison,optimized atomic-scale hole doping in the p-type PbTe can lead to a maximum ZT value of \x021.1 at 775 K in Pb0.98Na0.02Te,and the ZT value further increases to \x021.7 at 800 K after introducingnanostructures.17 For the n-t
英语翻译
By comparison,optimized atomic-scale hole doping in the p-type PbTe can lead to a maximum ZT value of \x021.1 at 775 K in Pb0.98Na0.02Te,and the ZT value further increases to \x021.7 at 800 K after introducing
nanostructures.17 For the n-type PbTe system,the ZT is \x021.3 at 750 K after iodine doping,65 and further increases to \x021.6 at 775K after introducing Ag2Te nanostructures.66
All-scale hierarchical structuring has also been successful inPbSe.16,53,67–70 Fig.6(a) shows a comparison of the lattice thermal conductivity for both n-type and p-type PbSe systems.It is clear that point defect scattering alone is effective in lowering the lattice thermal conductivity at room temperature of PbSe by 25% and \x0220% for p-type Pb0.98Na0.02Se53 and n-type PbSe0.9932Cl0.0068,33 respectively.The nanostructuring however creates additional phonon scattering for an overall \x0235% reduction of lattice thermal conductivity for n-type PbSe0.994Cl0.006 with 12% PbS nanostructures.33 The mesostructuring contributes additional phonon scattering for an
overall lattice thermal conductivity reduction of \x0240% and 50% for p-type Pb0.98Na0.02Se–3%BaSe16,53 and n-type PbSe0.9932Cl0.0068–16%PbS,respectively.This pushes the ZT
values to unprecedented levels of \x021.3 and 1.5 for p-type Pb0.98Na0.02Se–3%BaSe and n-type PbSe0.9932Cl0.0068–16%PbS,respectively,see Fig.6(b).
英语翻译By comparison,optimized atomic-scale hole doping in the p-type PbTe can lead to a maximum ZT value of \x021.1 at 775 K in Pb0.98Na0.02Te,and the ZT value further increases to \x021.7 at 800 K after introducingnanostructures.17 For the n-t
人工翻译,请审阅.
通过比较,在p型PbTe中优化的原子尺度的空穴掺杂可以导致在Pb0.98Na0.02Te中在775K下1.1的最大ZT值,在引入纳米结构后在800 K 时ZT值进一步增大到1.7[17].在800K0.17对于n型PbTe系统来说,在碘掺杂后ZT在750 K 下为1.3,[65],而在引入Ag2Te纳米结构后在775K下进一步增加到1.6.[66]全方位的分层结构PbSe中也已取得成功[16,53,67-70].图6(a)比较了n型和p型PbSe系统的晶格热导率.很显然,单是点缺陷分散在PbSe于室温下的晶格热导率就有效地降低了25%,对于p型Pb0.98Na0.02Se53和n型PbSe0.9932Cl0.0068,33则降低了20%.然而,纳米结构化造成额外的声子分散,使带有12%PbS纳米结构的n型PbSe0.994Cl0.006的晶格热导率有总的35%的下降.[.33]中结构化有助于额外的声子分散导致总的晶格热导率降低,对p型Pb0.98Na0.02Se-3%BaSe16,53和n型PbSe0.9932Cl0.0068-16%PbS,分别降低40%和50%.这使p型Pb0.98Na0.02Se-3%BaSe和n型PbSe0.9932Cl0.0068-16%PbS的ZT值分别提升到前所未有的水平1.3和1.5,见图6(b)
自己翻译哦