已知函数f(x)x∈R满足f(x)=2bx/ax-1,a≠0,f(1)=1,且使f(x)=2x成立的实数只有一个,若数列{an}满足a1=2/3,a(n+1)=f(an),bn=1/an-1,nx属于N*,证明a1b1+a2b2+……+anbn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 19:00:07

已知函数f(x)x∈R满足f(x)=2bx/ax-1,a≠0,f(1)=1,且使f(x)=2x成立的实数只有一个,若数列{an}满足a1=2/3,a(n+1)=f(an),bn=1/an-1,nx属于N*,证明a1b1+a2b2+……+anbn
已知函数f(x)x∈R满足f(x)=2bx/ax-1,a≠0,f(1)=1,且使f(x)=2x成立的实数只有一个,若数列{an}满足a1=2/3,
a(n+1)=f(an),bn=1/an-1,nx属于N*,证明a1b1+a2b2+……+anbn

已知函数f(x)x∈R满足f(x)=2bx/ax-1,a≠0,f(1)=1,且使f(x)=2x成立的实数只有一个,若数列{an}满足a1=2/3,a(n+1)=f(an),bn=1/an-1,nx属于N*,证明a1b1+a2b2+……+anbn
1=f(1)=2b/(a-1),a=2b+1.
2x=f(x)=2bx/(ax-1),x不等于1/a.
2ax^2 - 2x = 2bx,
0=ax^2-(1+b)x=ax[x-(1+b)/a],(1+b)/a=0,b=-1,a=2b+1=-1.
f(x)=-2x/(-x-1)=2x/(x+1).
a(n+1)=f[a(n)]=2a(n)/[a(n)+1],
若a(n+1)=0,则a(n)=0,...,a(1)=0,与a(1)=2/3矛盾.
因此,a(n)不等于0.
1/a(n+1)=[a(n)+1]/[2a(n)]=(1/2)[1/a(n)] + 1/2,
1/a(n+1) - 1 = (1/2)[1/a(n) - 1]
{1/a(n)-1}是首项为1/a(1)-1=1/2,公比为(1/2)的等比数列.
1/a(n) - 1 = (1/2)^n = b(n),
1/a(n) = 1 + 1/2^n = [2^n+1]/2^n
a(n)=2^n/[1+2^n],
a(n)b(n)=1/[1+2^n]

已知二次函数f(x)=ax^2+bx+c(a,b,c∈R)满足:对于任意实数x,都有f(x)>=x, f(x) 已知二次函数f(x)满足f(x+1)-f(x)=2x+1 (x∈R),且f(0)=1,判断f(x)的奇偶性 已知函数y=f(x),满足2f(x)=f(x/1)=2x,x∈R且x≠0,求f(x) 已知函数f(x)满足 2f(x)-f(-x)=x²-2x-1 (x∈R),则f(x)= 已知定义在R上的函数f(x)满足f(1)=2,f'(x) 已知定义在R上的函数f(x)满足f(1)=2,f'(x) 已知函数f(x)满足2f(x)+f(1/x)=2x,且x∈R,≠0,则f(x)= 已知函数f(x)(x∈R)满足f(1)=2,且f(x)在R上的导数f'(x) 已知函数f(x)满足f(a+b)=f(a)×f(b),(a,b∈R),且f(1)=3,求(f(2)/f(1)) +(f(3)/f(2))+…(f(2008)/f(2007的已知函数f(x)满足f(a+b)=f(a)×f(b),(a,b∈R),且f(1)=3,求(f(2)/f(1)) +(f(3)/f(2))+……(f(2008)/f(2007))的值 已知定义域为R的函数f(x) 满足f(a+b)=f(a)f(b)(ab∈R),且f(x)>0,若f(1)=1/2,则f(-2)的值为多少, 已知定义域R上的函数f(x)满足f(2+x)=‐f(2-x),当x 已知二次函数f(x)满足f(0)=0,且对任意x∈R总有f(x+1)=f(x)+x+1,g(x)=2f(-x)+x,求f(g(x))的解析式 已知二次函数f(x)满足f(x+1)-f(x)=2x+1(x属于R),且f(0)=1,判断f(x)的奇偶性 已知函数f(x),x属于R满足f(2) =3,且f(x)在R上的导数满足f'(x)-1 已知函数f(x)满足f(x+y)+f(x-y)=2f(x)×f(y).(x∈R,y∈R.),且f(0)≠0.(1)求f(0)=?已知函数f(x)满足f(x+y)+f(x-y)=2f(x)×f(y).(x∈R,y∈R.),且f(0)≠0.(1)求f(0)=?(2)证明f(x)是偶函数.请解答者列出一定的过程, 1.已知函数f(x)=2sin^2 xcos^2 x,x∈R,则f(x)是最小正周期为___的___(奇/偶)函数2.若函数f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)+g(x)=1/(e^x),则有A.f'(x)+g(x)=0 B.f'(x)-g(x)=0 C.f'(x)+g'(x)=0 D.f(x)-g'(x)=0 已知函数fx对任意xy∈R满足f(x+y)=f(x)+f(y)求 1 f(0)的值2 f(x)为奇函数 已知函数f[x]在R上满足f[x]=2f[2-x]-x*x+8x-8,则f[x]的解析式是