已知数列{an}中,a1=√2/2,an=[2(Sn)^2]/(2Sn +1)(n≥2,n∈N*)(1)证明{1/Sn}为等差数列 (2)数列{an}中的最大项和最小项

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:47:26

已知数列{an}中,a1=√2/2,an=[2(Sn)^2]/(2Sn +1)(n≥2,n∈N*)(1)证明{1/Sn}为等差数列 (2)数列{an}中的最大项和最小项
已知数列{an}中,a1=√2/2,an=[2(Sn)^2]/(2Sn +1)(n≥2,n∈N*)
(1)证明{1/Sn}为等差数列 (2)数列{an}中的最大项和最小项

已知数列{an}中,a1=√2/2,an=[2(Sn)^2]/(2Sn +1)(n≥2,n∈N*)(1)证明{1/Sn}为等差数列 (2)数列{an}中的最大项和最小项
由an=Sn-S(n-1)代入即得:
Sn-S(n-1)=[2(Sn)^2]/(2Sn+1)
化简:2Sn·S(n-1)=Sn -S(n-1)
两边同除以Sn·S(n-1)即得:
1/Sn -1/S(n-1)=-2
∴{1/Sn}是等差数列,公差=-2,1/S1=1/a1=√2
1/Sn=√2-2(n-1)
Sn=1/(2+√2-2n)
an=Sn-S(n-1)=1/(2+√2-2n)-1/(4+√2-2n)=2/[(2+√2-2n)(4+√2-2n)]
=2/[(2n-3-√2)²-1]
分母为(2n-3-√2)²-1≈(2n-4.4)²-1
∴当n=2时,a2<0最小,a2=1/(1-√2)=-(√2+1)
当an>0时,n越大,an越小,故最大值应该是a1或a3中的一个!
a3=(5+√2)/7>a1
故a3最大