关于反函数的问题反函数是自变量和因变量位置互换而得到的新的函数,但对于y=f(x),如果对于第个取定的y值,都能够唯一地研确定x的一个值与之对应,则称g是f的反函数,f的反函数也可用f1表示
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:48:20
关于反函数的问题反函数是自变量和因变量位置互换而得到的新的函数,但对于y=f(x),如果对于第个取定的y值,都能够唯一地研确定x的一个值与之对应,则称g是f的反函数,f的反函数也可用f1表示
关于反函数的问题
反函数是自变量和因变量位置互换而得到的新的函数,但对于y=f(x),如果对于第个取定的y值,都能够唯一地研确定x的一个值与之对应,则称g是f的反函数,f的反函数也可用f1表示 这句话怎么理解,在这个函数中,f不是充当定义法则吗?又怎么设定g是f 的反函数?
关于反函数的问题反函数是自变量和因变量位置互换而得到的新的函数,但对于y=f(x),如果对于第个取定的y值,都能够唯一地研确定x的一个值与之对应,则称g是f的反函数,f的反函数也可用f1表示
你这里G是什么,F是什么?你问的就没让人明白.结合实际函数去理解就很容易明白,不需要去跟字母较劲.
反函数 一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x).则y=f(x)的反函数为y=f^-1(x).
存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的)
【反函数的性质】
(1)互为反函数的两个函数的图象关于直线y=x对称;
(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
(3)一个函数与它的反函数在相应区间上单调性一致;
(4)一般的偶函数一定不存在反函数(但一种特殊的偶函数存在反函数,例f(x)=a(x=0)它的反函数是f(x)=0(x=a)这是一种极特殊的函数),奇函数不一定存在反函数.关于y轴对称的函数一定没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数.
(5)一切隐函数具有反函数;
(6)一段连续的函数的单调性在对应区间内具有一致性;
(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】.
(8)反函数是相互的
(9)定义域、值域相反对应法则互逆(三反)
(10)原函数一旦确定,反函数即确定(三定)
例:y=2x-1的反函数是y=0.5x+0.5
y=2^x的反函数是y=log2 x
例题:求函数3x-2的反函数
y=3x-2的定义域为R,值域为R.
由y=3x-2解得
x=1/3(y+2)
将x,y互换,则所求y=3x-2的反函数是
y=1/3(x+2)
[编辑本段]⒈ 反函数的定义
一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= (y).若对于y在C中的任何一个值,通过x= (y),x在A中都有唯一的值和它对应,那么,x= (y)就表示y是自变量,x是自变量y的函数,这样的函数x= (y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f^-1(y).反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域.
说明:⑴在函数x=f^-1(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f^-1(y)中的字母x,y,把它改写成y=f^-1(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式.
⑵反函数也是函数,因为它符合函数的定义.从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f^-1(x),那么函数y=f^-1(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f^-1(x)互为反函数.
⑶从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f^-1(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f^-1(x)的值域;函数y=f(x)的值域正好是它的反函数y=f^-1(x)的定义域(如下表):
函数y=f(x)
反函数y=f^-1(x)
定义域
A C
值 域
C A
⑷上述定义用“逆”映射概念可叙述为:
若确定函数y=f(x)的映射f是函数的定义域到值域“上”的“一一映射”,那么由f的“逆”映射f^-1所确定的函数x=f^-1(x)就叫做函数y=f(x)的反函数.反函数x=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域.
开始的两个例子:s=vt记为f(t)=vt,则它的反函数就可以写为f^-1(t)=t/v,同样y=2x+6记为f(x)=2x+6,则它的反函数为:f^-1(x)=x/2-3.
有时是反函数需要进行分类讨论,如:f(x)=X+1/X,需将X进行分类讨论:在X大于0时的情况,X小于0的情况,多是要注意的.一般分数函数的反函数的表示为y=ax+b/cx+d(a/c不等于b/d)--y=b-dx/cx+a
定义又是难以理解
会做题就行了
反函数就是把x写成多少多少y
然后把x换成y
y换成x
这是两个函数啊,要分开看啊…
反函数存在的条件是 每一个x都有唯一的y且每一个y都有唯一的x,你只要记住这个就可以了…