若数列{bn}满足:bn+1=bn^2-(n-2)bn + 3,且b1≥1,n∈N*,用数学归纳法证明:bn≥n如题,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:46:36

若数列{bn}满足:bn+1=bn^2-(n-2)bn + 3,且b1≥1,n∈N*,用数学归纳法证明:bn≥n如题,
若数列{bn}满足:bn+1=bn^2-(n-2)bn + 3,且b1≥1,n∈N*,用数学归纳法证明:bn≥n
如题,

若数列{bn}满足:bn+1=bn^2-(n-2)bn + 3,且b1≥1,n∈N*,用数学归纳法证明:bn≥n如题,
bn+1=bn^2-(n-2)bn + 3
=(bn-n)*bn+2bn+3
>=2n+3
>=n+1
由归纳假设可得bn>=n

若数列{bn}满足b1=1,bn+1=bn+2^n1、求数列{bn}通项公式 2、求证bn*bn+2 若数列bn满足bn=n^2/2^(n+1),证明bn 已知数列{ bn } 满足2b(n+1)= bn + 1/bn ,且bn>1,求{bn}通项公式 若数列{bn}满足b1=1,b2=2,bn+2=3bn+1-2bn,求{bn}的通项公式. 设数列{bn}满足bn=n^2/2^(n+1),证明:bn 若数列bn满足b1=2,且bn+1=bn+2^n+n,求数列bn的通项公式. 数列{bn}满足 3bn+1 + 3bn-1 = bn,b1 =1,求{bn}的通项公式 18、一道数列题已求出数列An=2n.若数列Bn满足B(n+1)=Bn^2-(n-2)Bn+3,Bn大于等于1,证明:Bn大于等于An/2 数列{an}为等差数列,数列{bn}满足bn=2an+1+a2n-1,证明{bn}为等差数列 设数列{bn},b1=1,bn+1=lnbn+bn+2,证明bn 已知数列满足{bn}满足:b1=1,当n≥2时,bn=(2bn-1)/(bn-1+3),求bn其中,n-1都是b的下标已知数列{bn}满足:b1=1,当n≥2时,bn=(2bn-1)/(bn-1+3),求bn其中,n-1都是b的下标 an=2*3^n-1 若数列bn满足bn=an+(-1)^n*ln(an),求数列bn前n项和Sn 两个数列{an}和{bn}满足bn=a1+2a2+...+nan/1+2+...+n,求证:若{bn}为等差数列,则数列{an}也是等差数列?能看懂的 数列{an}{bn}满足bn=a1+2a2+3a3+…+nan/(1+2+3+…+n),若数列{an}为等差数列,求证;{bn}为等差数列. (2)若数列{bn}满足bn=an log2 an+1,求数列{bn}的前n项和Tn 已知数列{bn}满足b1=1,bn+1=2bn+2,求证:数列{bn+2}是等比数列,并指出首项与公比 已知数列{bn}满足b1=1,bn+1=2bn+2,求证:数列{bn+2}是等比数列,并指出首项与公比 已知数列{bn}满足b1=-1,b(n+1)=bn+(2n-1),求bn