高二解析几何(椭圆)设A,B是椭圆(x^2)/4+(y^2)=1上的两点,O为坐标原点若直线AB在y轴上截距为4,且OA,OB的斜率之和等于2,求直线AB的斜率k(要详细过程)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 20:29:45

高二解析几何(椭圆)设A,B是椭圆(x^2)/4+(y^2)=1上的两点,O为坐标原点若直线AB在y轴上截距为4,且OA,OB的斜率之和等于2,求直线AB的斜率k(要详细过程)
高二解析几何(椭圆)
设A,B是椭圆(x^2)/4+(y^2)=1上的两点,O为坐标原点
若直线AB在y轴上截距为4,且OA,OB的斜率之和等于2,求直线AB的斜率k(要详细过程)

高二解析几何(椭圆)设A,B是椭圆(x^2)/4+(y^2)=1上的两点,O为坐标原点若直线AB在y轴上截距为4,且OA,OB的斜率之和等于2,求直线AB的斜率k(要详细过程)
设A,B是椭圆(x^2)/4+(y^2)=1上的两点,O为坐标原点
若直线AB在y轴上截距为4,且OA,OB的斜率之和等于2,求直线AB的斜率k(要详细过程)
解析:∵椭圆(x^2)/4+(y^2)=1
设直线y=kx+4与椭圆交于A(x1,y1),B(x2,y2),K(OA)+k(OB)=2
Y^2=k^2x^2+16+8kx
代入椭圆得:(1+4k^2)x^2+32kx+60=0
由韦达定理得x1+x2=-32k/(1+4k^2),x1x2=60/(1+4k^2)
Y1=kx1+4,y2=kx2+4
K(OA)+k(OB)=y1/x1+y2/x2=(y1x2+y2x1)/(x1x2)=2
∴[2kx1x2+4(x2+x1)]/(x1x2)=2k+4(x2+x1)/(x1x2)=2
2k+4*(-32/60)=2k-32/15=2==>k-16/15=1
∴k=31/15
∴直线AB的斜率k=31/15