,如题
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:58:50
,如题
,如题
,如题
证明:∵P,N分别是AD,BD中点
∴PN是▷ABD中位线
∴PN=AB/2
同理可得:QM=AB/2 PM=QN=CD/2
∵AB=CD
∴PN=QM=PM=QN
∴PNQM是菱形,PQ,MN是对角线
∴PQ⊥MN
利用中位线,可以证明四边形PMQN的四条边相等,是菱形,菱形的对角线互相垂直。
证明四边形PNQM是菱形
因为菱形的对角线相互垂直
因为P,Q,M,N分别是AD,BC,AC,BD的中点,则PN,PM,NQ,MQ分别是三角形ABD,ACD,BCD,ABC的中位线,又因为AB=CD,所以PN=PM=NQ=MQ,所以四边形PMNQ是菱形,所以PQ垂直MN。