求问一个幂级数展开的问题要证Sum((a_n x^n)/(1-x)) = Sum(a_0 + a_1 + ...+ a_n) x^n就下图的题我的证明是:(a_n)/(1-x) = Sum(a_n x^n) 再带进去变成 Sum(Sum(a_n x^n) x^n) => Sum(a_0 + a_1 + ...+ a_n) x^2n结果算出来跟
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:17:57
求问一个幂级数展开的问题要证Sum((a_n x^n)/(1-x)) = Sum(a_0 + a_1 + ...+ a_n) x^n就下图的题我的证明是:(a_n)/(1-x) = Sum(a_n x^n) 再带进去变成 Sum(Sum(a_n x^n) x^n) => Sum(a_0 + a_1 + ...+ a_n) x^2n结果算出来跟
求问一个幂级数展开的问题
要证Sum((a_n x^n)/(1-x)) = Sum(a_0 + a_1 + ...+ a_n) x^n
就下图的题
我的证明是:(a_n)/(1-x) = Sum(a_n x^n) 再带进去变成 Sum(Sum(a_n x^n) x^n) => Sum(a_0 + a_1 + ...+ a_n) x^2n
结果算出来跟给的不一样啊 这怎么解啊QAQ
求问一个幂级数展开的问题要证Sum((a_n x^n)/(1-x)) = Sum(a_0 + a_1 + ...+ a_n) x^n就下图的题我的证明是:(a_n)/(1-x) = Sum(a_n x^n) 再带进去变成 Sum(Sum(a_n x^n) x^n) => Sum(a_0 + a_1 + ...+ a_n) x^2n结果算出来跟
(a_n)/(1-x) = Sum(a_n x^n)
你确定这没问题?
最好用= Sum(a_n x^k) ,区分一下