已知动直线L:y=kx+1与圆C:x^2+y^2=r^2(r>0)恒有两个不同的交点AB(1)求r的取值范围(2)设k,r为常数,求弦AB的中点M的坐标(3)当k变化时,是否存在定点T使得MT为定长?若存在,求出定点坐标,若不
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 01:00:12
已知动直线L:y=kx+1与圆C:x^2+y^2=r^2(r>0)恒有两个不同的交点AB(1)求r的取值范围(2)设k,r为常数,求弦AB的中点M的坐标(3)当k变化时,是否存在定点T使得MT为定长?若存在,求出定点坐标,若不
已知动直线L:y=kx+1与圆C:x^2+y^2=r^2(r>0)恒有两个不同的交点AB(1)求r的取值范围
(2)设k,r为常数,求弦AB的中点M的坐标(3)当k变化时,是否存在定点T使得MT为定长?若存在,求出定点坐标,若不存在,说明理由
已知动直线L:y=kx+1与圆C:x^2+y^2=r^2(r>0)恒有两个不同的交点AB(1)求r的取值范围(2)设k,r为常数,求弦AB的中点M的坐标(3)当k变化时,是否存在定点T使得MT为定长?若存在,求出定点坐标,若不
1.r>12.y=kx+1 代入x的平方+y的平方=r的平方 得(1+k的平方)x的平方+2kx+1-r的平方=0设A(x1,y1),B(x2,y2) ,(x1+x2)/2=-k/(1+k的平方),(y1+y2)/2=k(x1+x2)/2+1=1/(1+k的平方),弦AB的重点M的坐标(-k/(1+k的平方),1/(1+k的平方))3.令x=-k/(1+k的平方),y= 1/(1+k的平方),消去k,得x^2+y^2-y=0故M在圆上运动,到圆心T(0,0.5)的距离为定长0.5
已知直线族L:kx-y-4k+3=0,另有定圆C:x^2+y^2-6x-8y+21=0.试判定动直线L与定圆C的位置关系并加以证明
已知动直线L:y=kx+5和圆C:(x-1)的平方+y的平方=1,试问k为何值时,直线L与C相离·相切·相交.
已知圆C:x^2+y^2-2x-2y+1=0,直线l:y=kx
已知动圆过(1,0),且与直线x=-1相切(1)求动圆的圆心轨迹C的方程(2)是否存在直线l:y=kx+1(k不等于0),并与轨迹C交于P,Q两点,且满足向量OP*向量PQ=0?若存在,求出直线l的方程;若不存在,说明
已知圆C:x^2+y^2-4x-6y-3=0与直线l:kx-y+1-3k=0(k∈R) 【求直线l被圆C截得的弦长的最小值】已知圆C:x^2+y^2-4x-6y-3=0与直线l:kx-y+1-3k=0(k∈R)【求直线l被圆C截得的弦长的最小值】
已知直线l:kx-y-k+4=0与圆C:(x-1)^2+y^2=4相切,求实数k的值
已知直线L:y=-1及圆C:X^2+(y-2)^2=1,动圆M与L相切,且与圆C外切,求动圆圆心M的轨迹方程.快,
已知直线l:y=-1及圆C:x^2+(y-2)^2=1,动圆M与L相切,且与圆C外切,求动圆圆心M的轨迹方程
已知直线L:Y=-1及圆C:X^+(Y-2)^=1,动圆M与L相切且与圆C外切,则动圆圆心M的轨迹方程是?
已知圆C:(x+cosA)^2+(y-sinA)^2=1,那么直线L:y=kx,则下列说法正确的是1,对于已知圆C:(x+cosA)^2+(y-sinA)^2=1,那么直线L:y=kx,则下列说法正确的是(1)对于任意实数A,必存在实数k,使得直线l与M相切;
已知直线L:y=Kx+1,圆C:(X-1)^2+(y+1)^2=12 1、证明:不论K为何实数,直线L与圆C总有两个交点,已知直线L:y=Kx+1,圆C:(X-1)^2+(y+1)^2=121、证明:不论K为何实数,直线L与圆C总有两个交点,2、求直线
已知圆C:x^2+y^2-2x-2y+1=0,直线l:y=kx,且l与圆C相交于P,Q两点,点M(0,b),且MP⊥MQ.当1
已知动圆P与动圆C:(x+2)平方+Y平方=1相外切,又与定直线L:X=1相切,那么动圆的圆心P的轨迹方程是?
已知直线l:kx-y+k+2=0,圆C:x方+y方-4x-16=0 1 求证:不论实数k为何值,直线l与圆C总有两个不同的焦点 2当直线l与圆C相交锁的弦最短时,求直线l的方程及弦长
已知直线l:y=2x+1,若直线y=kx+b与直线l关于x轴对称,求k,b的值
已知F1,F2分别是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点,直线x=a^2/c[注:c=√(a2-b2)]上的点P(2,√3),满足线段PF1的中垂线过点F2,直线l:y=kx+m为动直线,且直线l与椭圆C交与不同的两点A,B.1求椭圆C方程2
已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上,该动圆圆心轨迹M的方程为y^2=4x设过点P,且斜率为...已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上,该动圆圆心轨迹M的方程为y^2=4x设过
已知直线l:kx-y+2=0与直线y=2x-1的夹角为45°,求直线l的方程