过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左焦点F的直线与双曲线C的右支交于点P,与圆x^2+y^2=a^2恰好切于线段FP的中点M,则直线的斜率为?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:26:27

过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左焦点F的直线与双曲线C的右支交于点P,与圆x^2+y^2=a^2恰好切于线段FP的中点M,则直线的斜率为?
过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左焦点F的直线与双曲线C的右支交于点P,与圆x^2+y^2=a^2恰好切于线段FP的中点M,则直线的斜率为?

过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左焦点F的直线与双曲线C的右支交于点P,与圆x^2+y^2=a^2恰好切于线段FP的中点M,则直线的斜率为?
斜率是a/b;
方法是,设坐标轴原点是O.则由相切知OM=a;OM垂直于FM;于是在直角三角形中,勾股定理知FM=b;所以角MFO的正切是a/b就是斜率.
这是最简单的方法,期待更多讨论.

OF=c

PF相切圆O于M,OM=a

∴FM=b

∵线段FP的中点M

∴PF=2b

作PE⊥x轴

△FMO∽△FEP

∴a/PE=c/2b=b/FE

∴PE=2ab/c

FE=2b^2/c

直线的斜率=tan∠F=PE/FE=(2ab/c)/(2b^2/c)=a/b

很高兴为您解答,祝你学习进步!

有不明白的可以追问!如果您认可我的回答,请选为满意答案,并点击好评,谢谢!

已知抛物线y^=4x焦点F恰好是双曲线x^/a^-y^/b^=1的右焦点,且双曲线过点(3a^/2,b)则该双曲线的渐近线方程为 双曲线y=k/x过点(a,b),且a、b满足|a+2√3|+(b-2√3)2=0(1)求双曲线的解析式.(2)双曲线y=k/x过点(a,b),且a、b满足|a+2√3|+(b-2√3)^2=0(1)求双曲线的解析式.(2)直线y=2x-2交x轴于A、交y轴于B,在双曲线上是否 已知双曲线x^2/a^2—y^2/ b^2 =1(a>b>0)和圆O:x^2+y^2=b^2(其中原点O为圆心),过双曲线C上一点P(X.,Y.) 过双曲线x^2-y^2/2=1的右焦点F作直线l交双曲线于A,B两点,若2 过双曲线x^2/3-y^2/6=1的右焦点F倾斜角为30度的直线交双曲线于A,B两点求|AB| 已知双曲线x^2-y^2/3=1 过原点的直线L交双曲线于A B两点 求|AB|最小值 已知双曲线x^2-y^2/3=1 过原点的直线L交双曲线于A B两点 求|AB|最小值 已知双曲线C:x²/a²-y²/b²=1(a>0,b>0)的渐近线与双曲线x²/3-y²/2=1的渐近线相同,且双曲线C过点(3√10,5√2)(1).求双曲线C的标准方程;(2).若直线l过双曲线C的左焦点,且 高二解析几何之双曲线直线y=k(x-1)与双曲线y^2-x^2=1交于双曲线下支A、B两点,直线L过点(0,-2)和AB中点,求L横截距范围 一道关于双曲线的数学题过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的右焦点F作双曲线在第二、四象限的渐近线的垂线l,垂足为P,l与双曲线的左、右支的交点分别为A,B.5 [ 标签:双曲线,焦点双曲线,渐 -(还是需要过程)若双曲线x^2/a^2-y^2/b^2=1(a>0 b>0)的一条渐近线的方程为y=x,且过点p(2,-1),则该双曲线方程? 过双曲线x^2/a^2-y^2/b^2=1右焦点的直线交双曲线所得的弦长为2a,若这样的直线有且只有两条,则双曲线离心率为 高二数学双曲线过曲线X^2/a^2-y^2/b^2=1(a>0,b>0)的右焦点F作与X轴垂直的直线,分别与双曲线、双曲线的渐近过曲线X^2/a^2-y^2/b^2=1(a>0,b>0)的右焦点F作与X轴垂直的直线,分别与双曲线、双曲线的渐近线 直线y=kx+b过x轴上的点A(3/2,0),且双曲线y=k/x相交于B,C两点,已知B点坐标为(-2/1,4),求直线和双曲线 已知A是双曲线y=2/x上的一点,过点A作AB//x轴,交双曲线y=-3/x,于B,若OA⊥OB,则OA/OB=____.[图画得不是很好.见谅] 如图,点A为双曲线Y=2/x的图像上一点,过A作AB∥X轴交双曲线y=-4/x于点B,连AO,BO,求△AOB的面积这是图 双曲线过(3/4,5/2)渐近线方程y=±2x 双曲线方程 如图点a为双曲线y=2/x的图像上一点,过a作ab//x轴交双曲线y=-4/x于点b连ao,bo,求三角形aob的面积.如图,点A为双曲线Y=2/x的图像上一点,过A作AB∥X轴交双曲线y=-4/x于点B,连AO,BO,求△AOB的面积