若函数f( x)=X^3+ax^2-a^2x+m(m>0)1.若函数在X属于〔-1,1〕内没有极值点,求a的取值范围2.求函数单调递增的区间3.若对任意的X属于〔3,6〕,不等式F(x)小于等于1在〔-2,2〕上恒成立,求实数m的取值范

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 14:48:59

若函数f( x)=X^3+ax^2-a^2x+m(m>0)1.若函数在X属于〔-1,1〕内没有极值点,求a的取值范围2.求函数单调递增的区间3.若对任意的X属于〔3,6〕,不等式F(x)小于等于1在〔-2,2〕上恒成立,求实数m的取值范
若函数f( x)=X^3+ax^2-a^2x+m(m>0)
1.若函数在X属于〔-1,1〕内没有极值点,求a的取值范围
2.求函数单调递增的区间
3.若对任意的X属于〔3,6〕,不等式F(x)小于等于1在〔-2,2〕上恒成立,求实数m的取值范围

若函数f( x)=X^3+ax^2-a^2x+m(m>0)1.若函数在X属于〔-1,1〕内没有极值点,求a的取值范围2.求函数单调递增的区间3.若对任意的X属于〔3,6〕,不等式F(x)小于等于1在〔-2,2〕上恒成立,求实数m的取值范
(1)首先求导y'=3x^2+2ax-a^2
要想让函数在[-1,1]上无极值点,只需让导函数在[-1,1]上没有根就可以了
分类讨论
(情况一):当判别式小于等于0,导函数无根
判别式=16a^2小于等于0
解得a=0
(情况二):当判别式大于0时,a不等于0
两根分别为-a,a/3
继续分类讨论
(情况一:)当a大于0时,a/3大于-a
所以要想无根,需要
-a大于等于1,或a/3小于等于-1,或-1小于等于-a小于a/3小于等于1
解得a小于等于-1,a小于等于-3,a小于等于1
所以综上,0小于a小于等于1 (因为三者是“或”的关系,注意)
(情况二)当a小于0时,a/3小于-a
所以要想无根,需要
a/3大于等于1,或-a小于等于-1,或-1小于等于a/3小于-a小于等于1
解得a大于等于3,a大于等于1,无解
所以综上,a大于等于3
总体综上,a的范围[0,1]并[3,正无穷)
(2)
第一问已经做了铺垫了
分类讨论
(情况一)判别式小于等于0,即a=0时,原函数在R上递增.
(情况二)当a大于0时,原函数在(负无穷,-a),(a/3,正无穷)上递增,在[-a,a/3]上递减
(情况三)当a小于0时,原函数在(负无穷,a/3),(-a正无穷)上递增,在[a/3,-a]上递减
(3)设g(x)=f(x)-1
将f(x)向下平移1
第二问又已经做了铺垫
(情况一)当a=0时,函数最大值就是f(6)=216+m
所以g(2)=215+m
所以215+m小于0,m小于-215
同时还得让[3,6]的值域在[-2,2]内
则需要g(3)大于等于-2,g(6)小于等于2
解得m无解
综上,情况一无解
再往下不会了,变量太多了,晕了.

已知函数f(x)=3x-5/ax^2+ax+1.若f(x)的定义域为R,求实数a的范围 已知函数f(x)=ax^2+4ax-4,若对于x∈【-3,-1】,f(x) 判断下列函数是否有零点,若有,有几个零点?f(x)=x^2-x-2f(x)=x^2+x+1f(x)=ax+1(a为实数)f(x)=x^3-1 已知函数f(x)=loga(3-ax) (1)求函数f(x)的定义域 (2)已知函数f(x)=(2已知函数f(x)=loga(3-ax) 求函数f(x)的定义域 )若函数f(x)在[2,6]上递增,并且最小值为loga(7/9a),求实数a的值. 函数f(x)=ax^2+x-a,a 已知函数f(x)=x3+3ax-1的导函数为f′(x),g(x)=f′(x)-ax-3.已知函数f(x)=x3+3ax-1的导函数为f′(x),g(x)=f′(x)-ax-3.(1)若x•g′(x)+6>0对一切x≥2恒成立,求实数a的取值范围;(2)若对满足 设a属于R,函数f(x)=ax^3-3x^2……函数f(x)=ax^3-3x^2若x=2是函数f(x)的极值点,求a的值 已知函数fx=3x+2,x<1.x²+ax,x≧1.若f{f(0)}=4a,则实数a是多少 已知函数f(x)=x2+ax+b,a,b∈R,且A={x|x=f(x)},B={x|x=f[f(x)]}..已知函数f(x)=x2+ax+b,a,b∈R,且A={x|x=f(x)},B={x|x=f[f(x)]}.(1)求证:A B;(2)若A={-1,3}时,求集合B. 函数f(x)=ln1/x-ax*x+x(a>0),若f(x)有两个极值点X1,X2,证明f(X1)+f(x2)>3-2ln2 已知函数f(x)=x^2-ax+4,x∈[-3,-1],若f(x) 设函数f(x)=-x^2+4ax-3a^2,若0 设函数f(x)=-x^2+4ax-3a^2,若0 已知函数f(x)=x的平方-2ax,x属于[-2,3] (1)若函数f(x)是单调函数,求a的取值范围 (2)求f(x)的最小值h(a 设函数f(x)=-x^2+4ax-3a^2.若0 已知函数f(x)=log底数3(x的2次方-ax).若a=2,求函数f(x)的定义域 设a∈R,函数f(x)=ax³-3x².若函数g(x)=f(x)+f’(x),x∈[0,2],在x=0处取得最大值,求a的取值范围设a∈R,函数f(x)=ax³-3x²。若函数g(x)=f(x)+f’(x),x∈[0,2],在x=0处取得最大值 函数f(x)=ax^3-x (a