△ABC中,AB=2,BC=4,角B=60°,设O是三角形ABC的内心,若向量AO=pAB+qAC,则p/q的值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 12:43:12

△ABC中,AB=2,BC=4,角B=60°,设O是三角形ABC的内心,若向量AO=pAB+qAC,则p/q的值为
△ABC中,AB=2,BC=4,角B=60°,设O是三角形ABC的内心,若向量AO=pAB+qAC,则p/q的值为

△ABC中,AB=2,BC=4,角B=60°,设O是三角形ABC的内心,若向量AO=pAB+qAC,则p/q的值为
解:AC^2=2^2+4^2-2*2*4*COS60°=12, AC=2√3,
2^2+(2√3)^2=4^2, 所以AB⊥AC
内切圆的半径r=(2+2√3-4)/2=√3-1,

过点O作OE⊥AB,OF⊥AC, AEOF为一个正方形,

AE=AF=√3-1,AE/AB=(√3-1)/2, AF/AC=(√3-1)/2√3
AE=(√3-1)/2*AB, AF=(√3-1)/2√3*AC
向量AO=向量AE+向量AF=(√3-1)/2*向量AB+(√3-1)/2√3*向量AC,

p/q=[(√3-1)/2]/[ (√3-1)/2√3]=√3

据余弦定理:|AC|^2=|AB|^2+|BC|^2-2|AB|*|BC|*cos(π/3)=4+16-2*2*4/2=2sqrt(3)
故:|BC|^2=|AB|^2+|AC|^2,即三角形ABC是以∠A为直角的直角三角形
故O点在边BC上,即:AO=(AB+AC)/2,而:AO=pAB+qAC,故:p=q=1/2
故:p/q=1

p/q= 根号3