已知向量a=(根号3sinx,cosx),向量b=(sinx,cosx),设函数f(x)=2乘以向量a乘以向量b+2m-1(x,m属于R)(1)求f(x)关于x的表达式,并求出f(x)的最小正周期(2)若x属于[0,π/2]时,f(x)的最小值为5,求m的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:29:17

已知向量a=(根号3sinx,cosx),向量b=(sinx,cosx),设函数f(x)=2乘以向量a乘以向量b+2m-1(x,m属于R)(1)求f(x)关于x的表达式,并求出f(x)的最小正周期(2)若x属于[0,π/2]时,f(x)的最小值为5,求m的值
已知向量a=(根号3sinx,cosx),向量b=(sinx,cosx),设函数f(x)=2乘以向量a乘以向量b+2m-1(x,m属于R)
(1)求f(x)关于x的表达式,并求出f(x)的最小正周期
(2)若x属于[0,π/2]时,f(x)的最小值为5,求m的值

已知向量a=(根号3sinx,cosx),向量b=(sinx,cosx),设函数f(x)=2乘以向量a乘以向量b+2m-1(x,m属于R)(1)求f(x)关于x的表达式,并求出f(x)的最小正周期(2)若x属于[0,π/2]时,f(x)的最小值为5,求m的值
第一个问题:
∵向量a=(√3sinx,cosx)、向量b=(sinx,cosx),
∴f(x)
=2向量a·向量b+2m-1=2√3(sinx)^2+(cosx)^2+2m-1=(2√3-1)(sinx)^2+2m
=[(2√3-1)/2](1-cos2x)+2m=(2√3+4m-1)/2-[(2√3-1)/2]cos2x.
∴f(x)=(2√3+4m-1)/2-[(2√3-1)/2]cos2x.
第二个问题:
∵g(x)=cos2x的最小正周期是π,∴f(x)的最小正周期是π.
第三个问题:
∵f(x)=(2√3+4m-1)/2-[(2√3-1)/2]cos2x,
∴在区间[0,π/2]上,f(x)的最小值=(2√3+4m-1)/2-[(2√3-1)/2]=5,
∴2m=5,∴m=5/2.

已知向量a=(2sinx,cosx)向量b=(根号3cosx,2cosx)定义域f(x)=向量a*b-1 已知向量m=(2sinx,cosx-sinx),n=(根号3cosx,cosx+sinx),F(x)=m.n 已知向量a=(sinx,根号3cosx),向量b=(cosx,cosx),f(x)=a*b,求f(x)的周期、值域及单调区间 已知向量a=(sinx,cosx)向量b=(1,根号3)则|a+b|最大值 已知向量a=(sinx,cosx)向量b=(1,根号3)则|a-b|最大值 已知向量a=(cosx,sinx),x属于{0,π},向量b=(根号3,-1) 若|2a-b| 已知向量a=(根号3cosx,cosx),b=(0,sinx),c=(sinx,cosx),d=(sinx,sinx)当x属于[0,已知向量a=(根号3cosx,cosx),b=(0,sinx),c=(sinx,cosx),d=(sinx,sinx) (1)当x属于[0,派/2]时,求向量c乘向量d的最大值.(2)设函数f(x)=(向量a 已知向量a=(2cosx,2sinx),向量b=(3,根号3)且向量a与向量b共线,则x= 已知向量A=[COSX,SINX] 向量B=[根号3,﹣1] 求2向量A减向量B的最大最小值 已知向量a=(sinx,-cosx) b=(cosx,根号3cosx)当x=π/3时,求/a/+/b/ 已知a向量=(2cosx,sinx),b向量=(sin(x+π/3),cosx-根号3sinx) f(x)=a向量×b向量 1.求fx最小正周期.2.fx值域. 已知向量a=(2根号3 sinx,cos^x),b=(cosx,2)函数f(x)=a*b 已知向量a=(cosx,sinx),b=(根号3,-1),求|2a-b|的最值 已知向量a=(5根号3cosx,cosx)b=(sinx,2cosx),函数f(x)=ab+b^2,当π/6 已知向量a=(sinx,根号3cosx),向量b=(cosx,cosx),f(x)=向量a*向量b,求f(x)的解析式和递增区间 已知向量a=(根号3cosx,cosx),b=(sinx,2cosx),记函数f(x)=2*向量a*向量b-2*|向量b|^2-11,当0 已知向量a=(根号3sinx,cosx)向量b=(cosx,cosx),f(x)=2向量a*向量b+2m-1 (x,m∈R) 求f(x)的表达式 已知sinx=根号3cosx,求sinx,cosx,tanx