已知函数f(x)=((a*3^X)+A-2)/((3^X)+1) 是否存在实数A使函数为奇函数证明你的结论

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 22:43:21

已知函数f(x)=((a*3^X)+A-2)/((3^X)+1) 是否存在实数A使函数为奇函数证明你的结论
已知函数f(x)=((a*3^X)+A-2)/((3^X)+1) 是否存在实数A使函数为奇函数证明你的结论

已知函数f(x)=((a*3^X)+A-2)/((3^X)+1) 是否存在实数A使函数为奇函数证明你的结论
如果A存在,则应有
奇函数满足 f(x)=-f(-x)
(a×3^x+A-2)/((3^x)+1)=-[(a×3^(-x)+A-2)/((3^(-x)+1)]
(a×3^x+A-2)(3^(-x)+1)=-(a×3^(-x)+A-2)((3^x)+1) 两边都乘以3^x
(a×3^x+A-2))((3^x)+1)=-((3^x)+1) [a+(A-2)3^x]
a×3^x+A-2=-a+(-A+2)3^x
a(3^x+1)=(2-A)(3^x+1)
A=2-a
a为实数
则A存在

f(-x) = -f(x)
带到两边求解
[a+(A-2)*3^x]/(3^x+1) = -(a*3^x+A-2)/(3^x+1)
a = -(A-2)
A-2 = -a
A = 2-a