已知抛物线y=x的平方与直线y=(2t-1)x-3有公共点(x1,y1)(x2,y3)且x1平方+x2平方=t平方+2t-31.求实数t的取值范围 2 当t为何值时,c取到最小值,并求出c的最小值 (x2,y3)改 了(x2,y2 )y=(2t-1)x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:51:03
已知抛物线y=x的平方与直线y=(2t-1)x-3有公共点(x1,y1)(x2,y3)且x1平方+x2平方=t平方+2t-31.求实数t的取值范围 2 当t为何值时,c取到最小值,并求出c的最小值 (x2,y3)改 了(x2,y2 )y=(2t-1)x
已知抛物线y=x的平方与直线y=(2t-1)x-3有公共点(x1,y1)(x2,y3)且x1平方+x2平方=t平方+2t-3
1.求实数t的取值范围
2 当t为何值时,c取到最小值,并求出c的最小值
(x2,y3)改 了(x2,y2 )
y=(2t-1)x-3 改y=(2t-1)x-c
已知抛物线y=x的平方与直线y=(2t-1)x-3有公共点(x1,y1)(x2,y3)且x1平方+x2平方=t平方+2t-31.求实数t的取值范围 2 当t为何值时,c取到最小值,并求出c的最小值 (x2,y3)改 了(x2,y2 )y=(2t-1)x
1.x1平方+x2平方=t平方+2t-3 大于等于0,得t 的范围 t小于等于-3或t大于等于1
2.x1+x2=2t-1
x1*x2=c
x1平方+x2平方=(x1+x2)平方-2x1*x2=(2t-1)平方-2c=t平方+2t-3
3t平方-6t+4=2c
c=1.5(t-1)平方+0.5
当t=1时,c最小=0.5
应该是这样的啊 . 用韦达定理
1.联立函数y=x的平方和y=(2t-1)x-c求根的判别式大于等于0得 (2t-1)平方-4c大于等于0,令此式为(1)式;
再由韦达定理可知 :
x1+x2=2t-1
x1*x2=c
x1平方+x2平方=(x1+x2)平方-2x1*x2=(2t-1)平方-2c=t平方+2t-3
得到3t平方-6t+4=2c
解得 c=1.5(...
全部展开
1.联立函数y=x的平方和y=(2t-1)x-c求根的判别式大于等于0得 (2t-1)平方-4c大于等于0,令此式为(1)式;
再由韦达定理可知 :
x1+x2=2t-1
x1*x2=c
x1平方+x2平方=(x1+x2)平方-2x1*x2=(2t-1)平方-2c=t平方+2t-3
得到3t平方-6t+4=2c
解得 c=1.5(t-1)平方+0.5 ,并将c代入(1)式有:
4t平方-4t+1大于等于6(t-1)平方+2
即2t平方-8t+7大于等于0
解得(4-根号2)/2小于等于t小于等于(4+根号2)/2
2.由c=1.5(t-1)平方+0.5 可知 在t大于等于1时 c为增函数
所以当t=(4-根号2)/2时,c最小=(11-6倍根号2)/4
此为正确答案
收起