已知函数y=f(n),满足f(1)=8,且f(n+1)=f(n)+7,n∈N+,求f(2),f(3)因为 f(1)=8,所以解:因为 f(1)=8,所以f(2)=f(1+1)=f(1)+7=8+7=15 f(3) =f(2+1)=f(2)+7=15+7=22.请问为什么是:f(2)=f(1+1)=f(1)+7=8+7=15,我觉着应该

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:03:31

已知函数y=f(n),满足f(1)=8,且f(n+1)=f(n)+7,n∈N+,求f(2),f(3)因为 f(1)=8,所以解:因为 f(1)=8,所以f(2)=f(1+1)=f(1)+7=8+7=15 f(3) =f(2+1)=f(2)+7=15+7=22.请问为什么是:f(2)=f(1+1)=f(1)+7=8+7=15,我觉着应该
已知函数y=f(n),满足f(1)=8,且f(n+1)=f(n)+7,n∈N+,求f(2),f(3)
因为 f(1)=8,所以解:因为 f(1)=8,所以f(2)=f(1+1)=f(1)+7=8+7=15 f(3) =f(2+1)=f(2)+7=15+7=22.请问为什么是:f(2)=f(1+1)=f(1)+7=8+7=15,
我觉着应该是,f(2)=f(2+1)=f(2)+7=

已知函数y=f(n),满足f(1)=8,且f(n+1)=f(n)+7,n∈N+,求f(2),f(3)因为 f(1)=8,所以解:因为 f(1)=8,所以f(2)=f(1+1)=f(1)+7=8+7=15 f(3) =f(2+1)=f(2)+7=15+7=22.请问为什么是:f(2)=f(1+1)=f(1)+7=8+7=15,我觉着应该
f(n+1)=f(n)+7
是一个恒等式,两边的n是一样的
都换成1
即是f(1+1)=f(1)+7
即f(2)=15.
都换成2
即是f(2+1)=f(2)+7
即 f(3)=22

已知函数y=f(n),满足f(1)=2,且f(n+1)=3f(n),n属于正整数,求f(3),f(4) 已知函数y=f(n),满足f(1)=8,且f(n+1)=f(n)+7,nEN+【指的是:n属于正整数】,求f(2),f(3),f(4)已知f(x)=[x+1],求f(3.2),f(-5.1),f(-4.8),f(7.2).已知:y=f(n),满足f(1)=2,且f(n+1)=3f(n),nEN+【指的是:n属于正整数】求:f(2),f 已知函数y=f(n),满足f(1)=8,且f(n+1)=f(n)+n,n∈N+,求f(2),f(3),f(4). 已知函数y=f(n)满足f(1)=8,且f(n+1)=f(n)+7,n∈N*.则f(2)=? 已知函数y=f(n),满足f(1)=2,且f(n+1)=2f(n)+3,n∈N+,则f(3)=____ 已知函数y=f(n),满足f(1)=2,且f(n+1)=2f(n)+3,n∈N+,则f(3)=____ 已知函数y=f(n),满足f(1)=8,且f(n+1)=f(n)+7,n∈N(正整数集),求f(2),f(3),f(4) 已知函数y=f(n),满足f(1)=8,且f(n+1)=f(n)+7,n属于N+,求f(2),f(3),f(4). 已知函数Y=f(n),满足f(1)=2,且f(n+1)=3f(n).求F(2),f(3),f(4).f(5) 已知函数y=f(n),满足f(1)=8,且f(n+1)=f(n)+7,n属于正整数,求f(2),f(3),f(4) 已知函数y=f(n),满足f(2)=4,且f(n)=nf(n-1),n属于N+.求:f(3),f(4),f(5) 已知函数y=f(n)满足f(n)=2(n=1),f(n)=3f(n-1)(n大于等于2),则f(3)= 一道数列应用题 求详解已知函数y = f ( x )( x ∈ R)满足 f ( x ) + f ( 1 - x ) = 1求(1)f( 1 / 2 ) 和 f ( 1 / n ) + f ( [ n-1 ] / n ) ( n ∈ N+ ) 的值;(2)若数列{an}满足 a n = f(0)+f(1/n )+ f ( 2/n 已知函数f(x)满足,f(1)=0.25,4f(x)f(y)=f(x+y)+f(x-y) 则f(2010)= 已知函数y=f(n),满足f(1)=2,且f(n+1)=3f(n),n属于正整数,求f(2),f(3),f(4),f(5) 已知对每一个实数x和y,函数f(x)满足f(x)+f(y)=f(x+y)+xy若f(1)=m,则满足f(n)=2014的正整数对(n,m)共有 已知函数y=f(x)满足f(-2)>f(-1),f(-1) 已知函数f(x)定义域是 (0,+∞),且满足f(xy)=f(x) +f(y已知函数f(x)在定义域 (0,+∞)上是增函数,且满足f(xy)=f(x) +f(y),f(2)=1,(1)求f(8) (2)解不等式f(x)-f(x-2)>3