a(n+1)=6n+1 bn=3/(6n-5)(6n+1) =1/2*6/(6n-5)(6n+1) =1/2*[(6n+1)-(6n-5)]/(6n-5)(6n+1) =1/2*[1/(6n-5)-1(2006•湖北)已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 05:39:05

a(n+1)=6n+1 bn=3/(6n-5)(6n+1) =1/2*6/(6n-5)(6n+1) =1/2*[(6n+1)-(6n-5)]/(6n-5)(6n+1) =1/2*[1/(6n-5)-1(2006•湖北)已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn
a(n+1)=6n+1 bn=3/(6n-5)(6n+1) =1/2*6/(6n-5)(6n+1) =1/2*[(6n+1)-(6n-5)]/(6n-5)(6n+1) =1/2*[1/(6n-5)-1
(2006•湖北)已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=3anan+1
,Tn是数列{bn}的前n项和,求使得Tn<m
20
对所有n∈N*都成立的最小正整数m;
bn=3*[1/(6n-5)×1/(6n+1)]
=3*(1/6)*[1/(6n-5)-1/(6n+1)]
=(1/2)*[1/(6n-5)-1/(6n+1)]
是怎样计算出来的,裂项相消法?

a(n+1)=6n+1 bn=3/(6n-5)(6n+1) =1/2*6/(6n-5)(6n+1) =1/2*[(6n+1)-(6n-5)]/(6n-5)(6n+1) =1/2*[1/(6n-5)-1(2006•湖北)已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn
裂项相消法

 

已知an=3^(n-1) bn=3n-6 设cn=b(n+2)/a(n+2) ,求证c(n+1) 已知数列an满足a1=5/6,a(n+1)=1/3an+(1/2)^(n+1),n属于N*,数列bn满足bn=a(n+1)-1/2an(n属于N*)(1)求证:数列bn是等比数列;(2)求数列bn的前n项和及数列an的通项公式. 数列bn的前n项和为Tn,6Tn=(3n+1)bn+2,求bn an=2^n+3^n,bn=a(n+1)+kan ,{bn}是等比数列,k= 数列{bn}满足bn=(2n-1)/3^n,求前n项和,Tn bn=6n+1那么bn-1为什么=6(n-1)+1 数列b(n+1)=bn+ 2^n.求bn. 已知数列{an},其中a1=1,a(n+1)=3^(2n-1)*an(n∈N),数列{bn}的前n项和Sn=log3(an/9^n)(n∈N)求an bn 设bn=1/2*3/4*5/6*...*(2n-1)/(2n) ,求证:(1)bn 设bn=1/2*3/4*5/6*...*(2n-1)/(2n) ,求证:b1+b2+...+bn 已知数列{an}满足a1=1,an=[a(n-1)]/[3a(n-1)+1]bn=ana(n+1),求数列{bn}的前n项和Sn注:n,n-1,n+1 都为下标 裂项相消法解题Bn=3/{(6n-5)(6n+1)}怎样裂项相消 在数列{an}中,a1=6,an=3a(n-1)+3^n(n≥2,且n∈N)(1)证明{an/3^n}为等差数列(2)若bn=an-3^n,求数列{bn}的前n项和Sn. 等差数列{an},{bn}的前n项和分别为An,Bn,切An/Bn=2n/3n+1,求lim(n→∞)an/bn 在平面直角坐标系中,An(n,an),Bn(n,bn),Cn(n-1,0)(n是N*)满足向量AnAn+1与向量BnCn共线,且点Bn(n,bn)都在斜率为6的同一条直线上(1)试用a1,b1与n来表示an;(2)设a1=a,b1=-a,且12 裂项相消求和:数列{an}中,an=1/(n+1)+2/(n+1)+3/(n+1)+……+n/(n+1),bn=2/(an*a(n+1)),求数列{bn}的前n项 高一数学题;已知bn-bn-1=2n-6 求bn的通项公试. 已知数列An中,A0=2,A1=3,A2=6,且对n≥3时,有An=(n+4)A(n-1)-4nA(n-2)+(4n-8)A(n-3)(1)设数列Bn满足Bn=An-nA(n-1),证明数列(B(n+1)-2Bn)为等比数列.(2)求数列(Bn)的通项公式