9、设a≥0,b≥0,且a2+(b2\2)=1,则a^(1+b2)的最大值为          (  )

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:28:10

9、设a≥0,b≥0,且a2+(b2\2)=1,则a^(1+b2)的最大值为          (  )
9、设a≥0,b≥0,且a2+(b2\2)=1,则a^(1+b2)的最大值为          (  )

9、设a≥0,b≥0,且a2+(b2\2)=1,则a^(1+b2)的最大值为          (  )
你的a2、b2是a的平方、b的平方的意思吧?用a^2、b^2代替
a^2+(b^2\2)=1可得b^2=2(1-a^2)≥0,又a≥0,则1≥a≥0
a^(1+b^2)=a^(3-2a^2)
因为函数f(x)=3-2a^2在[0,1]上单调递减
函数g(x)=a^x在1≥a≥0时在[0,1]上单调递减
所以函数h(x)=g(f(x))=a^(3-2a^2)[0,1]上单调递增
所以a^(3-2a^2)即a^(1+b2)的最大值在a=1时取得,为1