设t=sinα+cosα,且sin³α+cos³α<0,则t的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:33:27

设t=sinα+cosα,且sin³α+cos³α<0,则t的取值范围
设t=sinα+cosα,且sin³α+cos³α<0,则t的取值范围

设t=sinα+cosα,且sin³α+cos³α<0,则t的取值范围
sin³α+cos³α=(sina+cosa)(sin^2a+cos^2a-sinacosa)
=t(1-sinacosa)
=t(1-1/2sin2a)<0
所以t<0

还有t也应该大于-2^(1/2)哦,是吧