Rt△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC交与AC于D,作CE⊥BD交BD的延长线于E,交BA的延延长线于F,过A作AHBC交BC于H、交BDY于M(1)求∠AMD的度数;(2)求证:BD=2CE.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:56:47

Rt△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC交与AC于D,作CE⊥BD交BD的延长线于E,交BA的延延长线于F,过A作AHBC交BC于H、交BDY于M(1)求∠AMD的度数;(2)求证:BD=2CE.
Rt△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC交与AC于D,作CE⊥BD交BD的延长线于E,交BA的延延长线于F,过A作AH
BC交BC于H、交BDY于M(1)求∠AMD的度数;(2)求证:BD=2CE.

Rt△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC交与AC于D,作CE⊥BD交BD的延长线于E,交BA的延延长线于F,过A作AHBC交BC于H、交BDY于M(1)求∠AMD的度数;(2)求证:BD=2CE.
(1)
已知,Rt△ABC中,∠BAC = 90°,AB = AC ,
可得:∠ABC = 45°;
所以,∠AMD = ∠BMH = 90°-∠CBD = 90°-(1/2)∠ABC = 67.5°.
(2)
在△BCE和△BFE中,
∠BEC = 90°= ∠BEF ,BE为公共边,∠CBE = ∠FBE ,
所以,△BCE ≌ △BFE ,
可得:CE = EF ,即有:CF = 2CE ;
在△CAF和△BAD中,
∠ACF = 90°-∠AFC = ∠ABD ,AC = AB ,∠CAF = 90°= ∠BAD ,
所以,△CAF ≌ △BAD ,
可得:CF = BD ,则有:BD = 2CE .

67.5