求S=√1+1/12+1/22+√1+1/22+1/32+√1+1/32+1/42+...+√1+1/99²+1/100²的值“2”代表的是平方哟
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:19:05
求S=√1+1/12+1/22+√1+1/22+1/32+√1+1/32+1/42+...+√1+1/99²+1/100²的值“2”代表的是平方哟
求S=√1+1/12+1/22+√1+1/22+1/32+√1+1/32+1/42+...+√1+1/99²+1/100²的值
“2”代表的是平方哟
求S=√1+1/12+1/22+√1+1/22+1/32+√1+1/32+1/42+...+√1+1/99²+1/100²的值“2”代表的是平方哟
S=√(1+1/1²+1/2²)+√(1+1/2²+1/3²)+√(1+1/3²+1/4²)+...+√(1+1/99²+1/100²)
通项an=√[1+1/n²+1/(n+1)²]
=√{[(n+1)²n²+(n+1)²+n²]/[n²(n+1)²]}
=1/[n(n+1)]* √[n²(n+1)²+2n²+2n+1]
=1/[n(n+1)]*√[n²(n+1)²+2n(n+1)+1]
=1/[n(n+1)]*√[n(n+1)+1]²
=[n(n+1)+1]/[n(n+1)]
=1+1/[n(n+1)]
=1+1/n-1/(n+1)
∴S=a1+a2+a3+.+a99
=(1+1-1/2)+(1+1/2-1/3)+(1+1/3-1/4)+.+(1+1/99-1/100)
=99+(1-1/2+1/2-1/3+1/4-1/4+.+1/99-1/100)
=99+1-1/100
=99又99/100
希望能帮到你啊,不懂可以追问,如果你认可我的回答请点
击下方选为满意回答按钮,谢谢! 祝你学习进步!