设定义在R上的奇函数f(x)满足f(x+3)为偶函数,且x∈[-3,0]时,f(x)=x^2,则f(2012)的值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:26:55

设定义在R上的奇函数f(x)满足f(x+3)为偶函数,且x∈[-3,0]时,f(x)=x^2,则f(2012)的值为
设定义在R上的奇函数f(x)满足f(x+3)为偶函数,且x∈[-3,0]时,f(x)=x^2,则f(2012)的值为

设定义在R上的奇函数f(x)满足f(x+3)为偶函数,且x∈[-3,0]时,f(x)=x^2,则f(2012)的值为
由题知:奇函数f(x)满足f(x+3)为偶函数
因为:f(x+3)为偶函数
则:f(x+3)=f(-x+3)
又因为:f(x)为奇函数
则:f(-x+3)=-f(x-3)=-f[(x-6)+3]=-f[-(x-6)+3]=-f(-x+9)=f(x-9)=f[(x-12)+3]=f[(12-x)+3]=f(-x+15)
由f(-x+3)=f(-x+15)可知:
f(x)的周期为12
因此:f(2012)=f(12*167+8)=f(8)=f(5+3)=f(-5+3)=f(-2)
因为:x∈[-3,0]时,f(x)=x^2
所以:f(-2)=4
得:f(2012)=4

f(x+3)=f(-x+3)=-f(x-3)=-f[(x-6)+3]=f[-(x-6)+3]=f(-x+9)
所以,周期为6
f(2012)=f(6x335+2)=f(2)=-f(-2)=-4

由奇函数f(x)满足f(x+3)为偶函数得F(X)是周期为六函数 2012是335个周期余2 由奇函数定义f(-x)=-f(x)得 在[0.3]函数的解析式是f(x)=-x^2 得f(2012)=-4