已知f(x)在(-∞,+∞)内二阶可导且有界,求证:存在a∈(-∞,+∞),使f ’’(a)=0.望高手给出严密证明.已知f(x)在(-∞,+∞)内二阶可导且有界,求证:存在a∈(-∞,+∞),使f ’’(a)=0。1楼的回答我感觉

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 05:55:14

已知f(x)在(-∞,+∞)内二阶可导且有界,求证:存在a∈(-∞,+∞),使f ’’(a)=0.望高手给出严密证明.已知f(x)在(-∞,+∞)内二阶可导且有界,求证:存在a∈(-∞,+∞),使f ’’(a)=0。1楼的回答我感觉
已知f(x)在(-∞,+∞)内二阶可导且有界,求证:存在a∈(-∞,+∞),使f ’’(a)=0.
望高手给出严密证明.
已知f(x)在(-∞,+∞)内二阶可导且有界,求证:存在a∈(-∞,+∞),使f ’’(a)=0。
1楼的回答我感觉有问题,如果f(x)=arctanx,它二阶可导且有界,满足题设,但是f'(x)始终不=0,你所说的f'(θ)=0的θ 和f'(ρ)=0的ρ 都是不存在的。
感谢大侠的回答。
再看看其他大侠是怎么做的。

已知f(x)在(-∞,+∞)内二阶可导且有界,求证:存在a∈(-∞,+∞),使f ’’(a)=0.望高手给出严密证明.已知f(x)在(-∞,+∞)内二阶可导且有界,求证:存在a∈(-∞,+∞),使f ’’(a)=0。1楼的回答我感觉
如果不存在x∈(-∞,+∞),使f ’’(x)=0,则f ’’(x)不变号,不妨设对任意f ’’(x)>0,则f ’(x)是单调增加的,由lagrange中值定理得
f (x)= f (x0)+f ’(c)(x-x0),其中x0是(-∞,+∞)任意一点,x0

f(x)在(-∞,+∞)内二阶可导且有界
既然f(x)在(-∞,+∞)内二阶可导且有界
则可设其下、上确界为。m,M可知M>m,且均为有限实数。
令N为足够大的正数,则有,lim(x趋近于+∞)[f(x)-f(N)]/(x-N)>=lim(x趋近于+∞)[m-M]/(x-N)
且lim(x趋近于+∞)[f(x)-f(N)]/(x-N)<=lim(x趋近于+∞)[M-...

全部展开

f(x)在(-∞,+∞)内二阶可导且有界
既然f(x)在(-∞,+∞)内二阶可导且有界
则可设其下、上确界为。m,M可知M>m,且均为有限实数。
令N为足够大的正数,则有,lim(x趋近于+∞)[f(x)-f(N)]/(x-N)>=lim(x趋近于+∞)[m-M]/(x-N)
且lim(x趋近于+∞)[f(x)-f(N)]/(x-N)<=lim(x趋近于+∞)[M-m]/(x-N)
所以,当x趋近于+∞时,总存在一个θ满足N<θ<+∞时,lim(θ趋近于+∞)f'(θ)=0
令P为一足够小的负数,有,lim(x趋近于-∞)[f(P)-f(x)]/(P-x)
同理可得,总存在一个ρ满足P>ρ>-∞,使得lim(ρ趋近于-∞)f'(ρ)=0
由于对任意区间[ρ,θ],总存在a∈[ρ,θ],使得f"(a)=(f'(ρ)-f'(θ))/(ρ-θ)
所以,当ρ趋近于-∞且θ趋近于+∞时,
有f"(a)=limρ(趋近于-∞且θ趋近于+∞)(f'(ρ)-f'(θ))/(ρ-θ)
={lim(ρ趋近于-∞)f'(ρ)-lim(θ趋近于+∞)f'(θ)}*limρ(趋近于-∞且θ趋近于+∞)1/(ρ-θ)
=0
由于,[ρ,θ]在ρ趋近于-∞且θ趋近于+∞时是集合(-∞,+∞)
所以,存在a∈(-∞,+∞),使f"(a)=0。
把f'(θ)=0换成lim(θ趋近于+∞)f'(θ)=0就可以了。哈哈~01025585663523526363663
22
626.33333333333333333333333333333333333332111155416341

收起

f(x)在(-∞,+∞)内二阶可导且有界
既然f(x)在(-∞,+∞)内二阶可导且有界
则可设其下、上确界为。m,M可知M>m,且均为有限实数。
令N为足够大的正数,则有,lim(x趋近于+∞)[f(x)-f(N)]/(x-N)>=lim(x趋近于+∞)[m-M]/(x-N)
且lim(x趋近于+∞)[f(x)-f(N)]/(x-N)<=lim(x趋近于+∞)[M-...

全部展开

f(x)在(-∞,+∞)内二阶可导且有界
既然f(x)在(-∞,+∞)内二阶可导且有界
则可设其下、上确界为。m,M可知M>m,且均为有限实数。
令N为足够大的正数,则有,lim(x趋近于+∞)[f(x)-f(N)]/(x-N)>=lim(x趋近于+∞)[m-M]/(x-N)
且lim(x趋近于+∞)[f(x)-f(N)]/(x-N)<=lim(x趋近于+∞)[M-m]/(x-N)
所以,当x趋近于+∞时,总存在一个θ满足N<θ<+∞时,lim(θ趋近于+∞)f'(θ)=0
令P为一足够小的负数,有,lim(x趋近于-∞)[f(P)-f(x)]/(P-x)
同理可得,总存在一个ρ满足P>ρ>-∞,使得lim(ρ趋近于-∞)f'(ρ)=0
由于对任意区间[ρ,θ],总存在a∈[ρ,θ],使得f"(a)=(f'(ρ)-f'(θ))/(ρ-θ)
所以,当ρ趋近于-∞且θ趋近于+∞时,
有f"(a)=limρ(趋近于-∞且θ趋近于+∞)(f'(ρ)-f'(θ))/(ρ-θ)
={lim(ρ趋近于-∞)f'(ρ)-lim(θ趋近于+∞)f'(θ)}*limρ(趋近于-∞且θ趋近于+∞)1/(ρ-θ)
=0
由于,[ρ,θ]在ρ趋近于-∞且θ趋近于+∞时是集合(-∞,+∞)
所以,存在a∈(-∞,+∞),使f"(a)=0。
把f'(θ)=0换成lim(θ趋近于+∞)f'(θ)=0就可以了。

收起

已知奇函数y=f(x)在(0,+∞)上是增函数,且f(x) 已知f(x)为奇函数且在(-∞,0)内是增函数又f(-2)=0则f(x) 已知奇函数f(x)(x属于R且x≠0)在区间(0,+∞)上是增函数,且f(2)=0,则不等式f(x) 已知定义在区间(0,+∞)上的函数f(x)满足f(x1/x2)=f(x1)-f(x2),且当x>1时f(x) 已知定义在区间(0,+∞)上的函数f(x),满足f(mn)=f(m)+f(n),且当x>1时,f(x) 已知f(x)是偶函数,且在(-∞,0)上是减函数,试证明f(x)在(0,+∞)上是增函数 已知函数f(x)的定义域为(0,+∞),且f(x)在(0,+∞)上是增函数,解不等式f(x)-f(-x+1/2)≤0RT,.. 已知函数f(x)在(-∞,+∞)上连续且满足∫(0,x)f(x-u)e^udu=sinx,x∈(-∞,+∞),求f(x) 已知函数f(x)在(0,+∞)上为减函数.且满足f(x,y)=f(x)+f(y)乘以f(3分之1)求1.f(1);2.若f(x)+f(2-x) 已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞)且f(x)在(0,+∞)上是增函数,f(1)=0 解不等式f(x) 已知函数f(x)定义域是 (0,+∞),且满足f(xy)=f(x) +f(y已知函数f(x)在定义域 (0,+∞)上是增函数,且满足f(xy)=f(x) +f(y),f(2)=1,(1)求f(8) (2)解不等式f(x)-f(x-2)>3 已知f(x)是定义在(0,+∞)上的增函数,f(2)=1,且对任意实数x,y满足f(x·y)=f(x)+f(y),解不等式f(x)+f(x-2) 证明增减函数已知函数y=f(x)是奇函数,在(0,+∞)内是减函数,且f(x) 已知f(X)为偶函数,且在[0,+∞)上为增函数,解不等式f(2x-1) 已知函数y=f(x)是奇函数,在区间(0,+∞)上是减函数,且f(x) 已知f(x)是R上的偶函数,且在(0,+∞)上单调递增,并且f(x) 已知f(x)是R上的偶函数,且在(0,∞)上单调递增,并且f(x) 已知f(x)为奇函数,在(0,+∞)上增函数 ,且f(-5)=o,xf(x)d>o