已知向量AB=(1+tanx,1-tanx),向量AC=(sin(x-π/4),sin(x+π/4)(1)求证:角BAC为直角(2)若x属于[-π/4,π/4],求三角形ABC的边BC的长度的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:27:57
已知向量AB=(1+tanx,1-tanx),向量AC=(sin(x-π/4),sin(x+π/4)(1)求证:角BAC为直角(2)若x属于[-π/4,π/4],求三角形ABC的边BC的长度的取值范围
已知向量AB=(1+tanx,1-tanx),向量AC=(sin(x-π/4),sin(x+π/4)
(1)求证:角BAC为直角
(2)若x属于[-π/4,π/4],求三角形ABC的边BC的长度的取值范围
已知向量AB=(1+tanx,1-tanx),向量AC=(sin(x-π/4),sin(x+π/4)(1)求证:角BAC为直角(2)若x属于[-π/4,π/4],求三角形ABC的边BC的长度的取值范围
1.证明:角BAC为直角,
即,证明:向量AB*向量AC=0,即可,
向量AB*向量AC=(1+tanx)*sin(x-π/4)+(1-tanx)*sin(x+π/4)
=[sin(x-π/4)+sin(x+π/4)]+tanx[sin(x-π/4)-sin(x+π/4)]
=2*sinx*cos(-π/4)+tanx*2cosx*sin(-π/4)
=√2*sinx-√2*sinx
=0,
即,向量AB⊥向量AC,
角BAC为直角 ,得证.
2.|BC|^2=|AB|^2+|AC|^2,
=(1+tanx)^2+(1-tanx)^2+[sin(x-π/4)]^2+[sin(x+π/4)]^2
=2+2tan^2x+[sin(x-π/4)]^2+[sin(x+π/4)]^2.
而,tanx,sinx在区间x属于[-π/4,π/4],都是同增,同减的,
当X=0时,|BC|^2取最小值,
|BC|^2=2+2*(1/2)=3,
|BC|=√3,
当X=-π/4,或π/4时,
|BC|^2=2+2+1=5,
|BC|=√5.
则,三角形ABC的边BC的长度的取值范围是:√3≤|BC|≤√5.
(1)、若证明角BAC是直角,只需证明向量AB与向量AC互相垂直即可,而向量垂直的条件是向量的数量积为零,即AB.AC=0。而AB.AC=(1+tanx)(sin(x-π/4))+(1-tanx)(sin(x+π/4))=(sin(x-π/4)+sin(x+π/4))+tanx(sin(x-π/4)-sin(x+π/4))=2sinxcos(-π/4)+2tanxcosxsin(-π/4)=2si...
全部展开
(1)、若证明角BAC是直角,只需证明向量AB与向量AC互相垂直即可,而向量垂直的条件是向量的数量积为零,即AB.AC=0。而AB.AC=(1+tanx)(sin(x-π/4))+(1-tanx)(sin(x+π/4))=(sin(x-π/4)+sin(x+π/4))+tanx(sin(x-π/4)-sin(x+π/4))=2sinxcos(-π/4)+2tanxcosxsin(-π/4)=2sinxcos(π/4)-2sinxsin(π/4)=0; (2)、BC的长度为向量AC与AB差的模,即|AC-AB|=[(1+tanx-sin(x-π/4))^2 +(1-tanx-sin(x+π/4))^2]^0.5将平方项展开运用三角公式化简得:(3+2(tanx)^2)^0.5,当x属于[-π/4,π/4]时,tanx属于[-1,1],所以 0≤(tanx)^2≤1,所以3≤3+2(tanx)^2≤5,所以3^0.5≤(3+2(tanx)^2)^0.5≤5^0.5
收起