若a1,a2,b1,b2满足a1²+b1²=1,a2²+b2²=1,且a1a2+b1b2=0求证:a1²+a2²=1,b1²+b2²=1,且a1b1+a2b2=0请用一个正常学生能看懂的思路解答
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:28:41
若a1,a2,b1,b2满足a1²+b1²=1,a2²+b2²=1,且a1a2+b1b2=0求证:a1²+a2²=1,b1²+b2²=1,且a1b1+a2b2=0请用一个正常学生能看懂的思路解答
若a1,a2,b1,b2满足a1²+b1²=1,a2²+b2²=1,且a1a2+b1b2=0
求证:a1²+a2²=1,b1²+b2²=1,且a1b1+a2b2=0
请用一个正常学生能看懂的思路解答
若a1,a2,b1,b2满足a1²+b1²=1,a2²+b2²=1,且a1a2+b1b2=0求证:a1²+a2²=1,b1²+b2²=1,且a1b1+a2b2=0请用一个正常学生能看懂的思路解答
设向量OA=(a1,b1) OB=(a2.b2)
a1^2+b1^2=1
a2^2+b2^2=1
就是说他们的模长为一
a1a2+b1b2=0
就是说他们互相垂直
(a1^2-a2^2)+(b1^2-b2^2)=0
所以就是说
a1^2-a2^2=0
b1^2-b2^2=0
所以咯
a1^2=a2^2
b1^2=b2^2
因为a1^2+a2^2=1,b1^2+b2^2=1
可以分别算出四个数,代进去算就可以了
大概就是这样了!