求方程(X^2)/2-(Y^2)/2=1 (X>0)上向量OA*向量OB的最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 04:20:52

求方程(X^2)/2-(Y^2)/2=1 (X>0)上向量OA*向量OB的最小值
求方程(X^2)/2-(Y^2)/2=1 (X>0)上向量OA*向量OB的最小值

求方程(X^2)/2-(Y^2)/2=1 (X>0)上向量OA*向量OB的最小值
设双曲线的参数方程为
{
x=√2·secθ;
y=√2·tanθ;
则令坐标为:点A(√2·secθ1 ,√2·tanθ1);点B(√2·secθ2 ,√2·tanθ2);
则向量OA·向量OB
=2·secθ1·secθ2 + 2·tanθ1·tanθ2
=2·(1+sinθ1·sinθ2)/(cosθ1·cosθ2)
≥2.