函数f(x)是定义在(0,+∞)上的增函数,且对于任意X1,X2∈(0,+∞),总有f(X1X2)=f(X1)+f(X2)证明:对于任意X1,X2∈(0,+∞),总有f(X1/X2)=f(X1)-f(X2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 22:15:24

函数f(x)是定义在(0,+∞)上的增函数,且对于任意X1,X2∈(0,+∞),总有f(X1X2)=f(X1)+f(X2)证明:对于任意X1,X2∈(0,+∞),总有f(X1/X2)=f(X1)-f(X2)
函数f(x)是定义在(0,+∞)上的增函数,且对于任意X1,X2∈(0,+∞),总有f(X1X2)=f(X1)+f(X2)
证明:对于任意X1,X2∈(0,+∞),总有f(X1/X2)=f(X1)-f(X2)

函数f(x)是定义在(0,+∞)上的增函数,且对于任意X1,X2∈(0,+∞),总有f(X1X2)=f(X1)+f(X2)证明:对于任意X1,X2∈(0,+∞),总有f(X1/X2)=f(X1)-f(X2)
先令X1=X2=1 那么f(1)=0 因为x>0 再令X1=1/X2 那么可以知道f(1)=f(x2)
+f(1/x2)=0所以f(x2)=-f(1/x2) 所以f(x1/x2)=f(x1)+f(1/x2)=f(x1)-f(x2)

f(x)是定义在(0,+∞)上的递减函数f(x)是定义在(0,+∞)上的递减函数,且f(x) f(x)是定义在(0,+∞)上的增函数 (x/y)=f(x)-f(y),证明f(xy)=f(x)+f(y) 函数f(x)是定义在(0,+∞)上的函数,f(2)=0;x>1时,f(x) f(x)是定义在(0,+∞)上的减函数,且f(x) 定义在R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(1) 若定义在R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间(0,+∞)上是单调增函数,那f(x)是不是单调增函数若定义在R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间(0,+∞)上是单调增函数,那 定义在R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间[0,+∞)上也是单调增函数,则函数f(x)在R上是单调增函数;为什么如果是定义在R上的函数f(x)在区间(-∞,0]上是单调增函数, 定义在R上的函数f(x)是增函数,则满足f(x) 若函数f(x)的定义是在(0,+∞)上的增函数,则不等式f(x)>f(8x-16)的解集为 已知f(x)是定义在(0,+∞)上的增函数,集合A={x|(x-2)/(x-1) 已知函数f(x)是定义在(0,+∞)上的增函数,则函数f(-x²+5x+6)的单调区间为____ 已知函数f(x)是定义在(0,+∞)上的增函数,则函数f(-x^2+5x+6)的单调区间为 已知函数f(x)是定义在(0,+∞)上的增函数 则函数f(-x^2+5x+6)的单调区间为? 设f(x)是定义在R上的增函数,试利用定义证明函数F(x)=f(x)-f(a-x)在R上是增函数 设函数f(x)是定义在(-∞,+∞)上的增函数,若不等式f(1-ax-x^2) 定义在(0,正无穷大)上的函数f(x)是增函数,若f(x) 已知函数y=f(x)是定义在R上增函数,则f(x)=0的根 f(x)是定义在R上的偶函数,f(x)在[0,+∞)上为增函数,那么f(pai)