若(a+b+c)(b+c-a)=3abc 且SinA=2SinB CosC 那么三角形ABC是什么三角形 求解答

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:27:35

若(a+b+c)(b+c-a)=3abc 且SinA=2SinB CosC 那么三角形ABC是什么三角形 求解答
若(a+b+c)(b+c-a)=3abc 且SinA=2SinB CosC 那么三角形ABC是什么三角形 求解答

若(a+b+c)(b+c-a)=3abc 且SinA=2SinB CosC 那么三角形ABC是什么三角形 求解答
∵ sinA=2sinBcosC
∴cosC=sinA/2sinB
∴cosC=a/2b =(a^2+b^2-c^2)/2ab 整理得b^2=c^2
∴b=c
(a+b+c)(b+c-a)=3abc
所以(a+2b)(2b-a)=3ab²
4b²-a²=3ab²
4b²-4a²=3ab²-3a²
4(b+a)(b-a)=3a(b-a)
(b-a)(4b+4a-3a)=0
(b-a)(4b+a)=0
因4b+a≠0
所以a=b
因b=c
所以a=b=c
等边三角形