x^2/4+y^2/3=1的左右焦点为ab,过b做一直线交椭圆与cd,则三角形acd的面积最大值是是多少?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:29:22
x^2/4+y^2/3=1的左右焦点为ab,过b做一直线交椭圆与cd,则三角形acd的面积最大值是是多少?
x^2/4+y^2/3=1的左右焦点为ab,过b做一直线交椭圆与cd,则三角形acd的面积最大值是是多少?
x^2/4+y^2/3=1的左右焦点为ab,过b做一直线交椭圆与cd,则三角形acd的面积最大值是是多少?
方法如此,你先自己画个图 把面积分成两个三角形的和 ACB+ADB 他们的底边AD是定值 高分别是他们的交点Y1 Y2 你设点斜式,与椭圆联立方程,消掉X ,利用跟与系数的关系得到Y1+Y2 与K的表达式,求出最值时的K,得到Y1+Y2 就出来了
F1、F2为椭圆x^2/4+y^2/3=1的左右焦点,A为椭圆上任一点,过焦点F1向角F1AF2的角平分线做垂线,垂足为D,D的轨迹方程?
F1、F2为椭圆x^2/4+y^2/3=1的左右焦点,A为椭圆上任一点,过焦点F1向角F1AF2的角平分线做垂线,垂足为D,D的轨迹方程?
椭圆x^2/4+y^2/3=1的左准线为l,左右两焦点分别为f1,f2,抛物线的准线为l,焦点为F2,椭圆和抛物线焦点为P,则|PF2|等于?
,已知椭圆x²/a²+y²/b²=1(a>b>0)的左右焦点分别为F1F2,线段F1F2为抛物,线段F1F2被已知椭圆x²/a²+y²/b²=1(a>b>0)的左右焦点分别为F1,F2,线段F1F2被抛物线y²=2bx的焦点分成长
双曲线x^2/a^2+y^/b^2=1的左右焦点为F1,F2.线段F1F2被抛物线y2=2bx的焦点分成5:3两段 则双曲线离心率为
双曲线 x^2/a^2-y^2/b^2=1,F1、F2为左右焦点,右支上有点P满足 |PF1|=4|PF2|,则曲线离心率的最大值为已知双曲线 x^2/a^2-y^2/b^2=1,F1、F2为左右焦点,右支上有点P满足 |PF1|=4|PF2|,则双曲线离心率的最大值为?
若曲线x^2/(a-4)+y^2/(a+5)=1的焦点为定点,则焦点坐标是
已知双曲线x^2/4-y^2=1,F1,F2为其左右焦点,直线l过右焦点且与双曲线右支交于A,B两点,求|F1A|*|F1B|的最小值
求双曲线方程,双曲线为 y^2/a^2-x^2/b^2=1的左右焦点为F1,F2,
已知椭圆x^2/4+y^2/3=1的左右焦点分别为F1F2,一条直线L经过F1与椭圆交于A,B两点若l的倾斜角为π/4,求△ABF的面积
设F1F2分别为椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点求第二问
已知A,B为椭圆x^2/4+y^2/3=1的左右两个顶点,F为椭圆的右焦点已知A B为椭圆x2/4+y2/3=1的左右两个顶点 F为椭圆的右焦点,P为椭圆上异于A B点的任意一点 直线AP BP分别交直线l:x=m(m>2) 于M N点,l交x轴于C
椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的长轴长为4,F1,F2分别为其左右焦点,抛物线Y2=-4X的焦点为F1过焦点F1的直线 L与椭圆交于P.Q两点,求三角形F2PQ面积的最大值
双曲线x^2/a^2+y^2/b^2=1的左右焦点为F1,F2.线段F1F2被抛物线y^2=2bx的焦点分成7:5两段则双曲线离心率
已知椭圆x^2/a^2+y^2/b^2=1,(a>b>0)左右焦点为F1F2,P为椭圆的动点,已知椭圆x^2/a^2+y^2/b^2=1,(a>b>0)左右焦点为F1F2,P为椭圆的动点,求向量PF1与向量PF2成最大角时P点的坐标!
已知椭园 X^2/a^2+y^2/b^2的左顶点为A,上顶点为B,左右焦点到直线AB的距离之比为(7-4根号3):1 .求椭圆的离心率
是高二数学文科选修的题.已知椭圆方程为x^2/16+y^2/9=1的左右焦点为F1,F2,过焦点F1的直线交椭圆于A,B两点,求三角形ABF2的周长.
已知双曲线C1:x^2/a^2-y^2/b^2=1的左右焦点分别为F1F2,抛物线C2:y^2=2px与双曲线C1共同焦点,C1与C2在...已知双曲线C1:x^2/a^2-y^2/b^2=1的左右焦点分别为F1F2,抛物线C2:y^2=2px与双曲线C1共同焦点,C1与C2在第一