F1,F2是双曲线x平方分之9-y平方分之16=1的两焦点,点P在双曲线上,若∠F1PF2=60°求三角形F1PF2的面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 12:25:34

F1,F2是双曲线x平方分之9-y平方分之16=1的两焦点,点P在双曲线上,若∠F1PF2=60°求三角形F1PF2的面积
F1,F2是双曲线x平方分之9-y平方分之16=1的两焦点,点P在双曲线上,若∠F1PF2=60°求三角形F1PF2的面积

F1,F2是双曲线x平方分之9-y平方分之16=1的两焦点,点P在双曲线上,若∠F1PF2=60°求三角形F1PF2的面积
a²=9
b²=16
所以c²=25
c=5
F1F2=2c=10
令PF1=m,PF2=n
则|m-n|=2a=6
平方
m²-2mn+n²=36
m²+n²=36+2mn
余弦定理
cos60=1/2=(m²+n²-4c²)/2mn=(36+2mn-100)/2mn
所以mn=2mn-64
mn=64
所以面积=1/2mnsin60=16√3

答案是16
c=5
即x=5代入16分之X平方减9分之Y平方等于一,y=9/4
(9/4)^2+(5+5)^2=41/4
41/4+41/4-(9/4)*2既是答案拉