F1,F2是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左、右焦点,过F1的直线L与双曲线C的两支分别交于点A,B若三角形ABF2为等边三角形,求双曲线离心率

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 14:48:56

F1,F2是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左、右焦点,过F1的直线L与双曲线C的两支分别交于点A,B若三角形ABF2为等边三角形,求双曲线离心率
F1,F2是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左、右焦点,过F1的直线L与双曲线C的两支分别交于点A,B
若三角形ABF2为等边三角形,求双曲线离心率

F1,F2是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左、右焦点,过F1的直线L与双曲线C的两支分别交于点A,B若三角形ABF2为等边三角形,求双曲线离心率
根据双曲线定义
∴|AF2|-|AF1|=2a ①
|BF1|-|BF2|=2a ②
∵ABF2是等边三角形
|AB|= |AF2|=|BF2| ③
①+②:|BF1|-|AF1|=4a
即|AB|= |AF2|=|BF2|=4a
∴|BF1|=6a
∵∠F1BF2=60º
根据余弦定理
|F1F2|²=|BF1|²+|BF2|²-2|BF1||BF2|cos60º
∴4c²=36a²+4a²-12a²=28a²
∴e²=c²/a²=7
∴e=√7

P为双曲线(x^2)/(a^2)-(y^2)/(b^2)上任意一点,F1,F2是双曲线的焦点,从F1作角F1PF2的角平分线的垂线...P为双曲线(x^2)/(a^2)-(y^2)/(b^2)上任意一点,F1,F2是双曲线的焦点,从F1作角F1PF2的角平分线的垂线,垂足 已知双曲线x^2/9-y^2=1的两个焦点为F1,F2,A是双曲线上一点,且|AF1|=5则|AF2|=多少 设f1,和f2为双曲线x^2/a^2-y^2/b^2=1的两个焦点,若f1,f2,p(0,2b)是正三角形的三个顶点,则双曲线的离心率为 已知双曲线的两焦点分别为F1,F2,其中F1是抛物线y^2=4*x的焦点,点A(-1,2),B(3,2)在双曲线上,求F2轨迹 已知双曲线的两焦点分别为F1,F2,其中F1是抛物线y^2=4*x的焦点,点A(-1,2),B(3,2)在双曲线上,求F2的轨迹? 设F1和F3为双曲线的平方/a的平方-y的平方/b的平方=1的两个焦点,若F1.F2.P(0,2b)是正三角形的三个顶点,则双设F1和F2为双曲线(x平方除以a平方)-(y平方除以b平方)(a>0,b>0)的两个焦点,若F1.F2.P(0, F1,F2 是双曲线的焦点若双曲线右支存在P点满足|PF2|=|F1F2|且F1与圆x^2+y^2=a^2F1,F2 是双曲线x^2/a^2-y^2/b^2=1的焦点,若双曲线右支存在P点,满足|PF2|=|F1F2|且F1与圆x^2+y^2=a^2相切 ,则该双曲线的渐近线方程 一道双曲线题目已知双曲线 x^2/a^2 - y^2/b^2 =1 左右焦点分别为F1 、F2,过点F2作与x轴垂直的直线于双曲线一个交点为P,且角P F1 F2=30°,则双曲线的渐进线方程为_____要具体的过程 答案是±√2x 一道高中双曲线题 急!F1,F2是双曲线X^2/4 - Y^2 = 1(a>0,b>0)的两个焦点.P在双曲线上.当F1 P F2的面积为1时,向量P F1*向量P F2的值为()A.0 B.1 C.1/2 D.2要详细的解答步骤.谢谢了~ 设O为坐标原点,F1,F2是双曲线 x^2/a^2-y^2/x^2=1(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠F1 设O为坐标原点,F1,F2是双曲线 x^2/a^2-y^2/x^2=1(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠F1 已知F1,F2是双曲线x^2/a^2-y^2/b^2=1的两个焦点,PQ是经过F1且垂直于x轴的双曲线的弦 角PF2Q=90度,求离心率 设f1f2和f2为双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的两焦点,若f1、f2、p(0,2b)是正三角形的三个顶点,则双曲线离心率是? 已知F1,F2是双曲线x^2/a^2-y^2/b^2=1(a,b>0)的两个焦点,过点F2且垂直于x轴的直线交双曲线于P且角F1PF2=60已知F1,F2是双曲线x^2/a^2-y^2/b^2=1(a,b>0)的两个焦点,过点F2且垂直于x轴的直线交双曲线于P,且角F1PF2 已知F1,F2是双曲线x^2/a^2-y^2/b^2=1(a,b>0)的两个焦点,过点F2且垂直于x轴的直线交双曲线于P且角F1PF2=60已知F1,F2是双曲线x^2/a^2-y^2/b^2=1(a,b>0)的两个焦点,过点F2且垂直于x轴的直线交双曲线于P,且角F1PF2 已知点F1,F2是双曲线x^2/a^2-y^2/b^2=1的两个焦点,以线段F1F2为边作正三角形MF1F2.若边MF1的中点在双曲线上,则双曲线的离心率是多少 双曲线的性质,求双曲线的渐近线方程已知F1,F2是双曲线(x^2/a^2)-(y^2/b^2)=1(a>0,b>0),过F2作垂直于x轴的直线交双曲线于点P,且角F1PF2=60度,求双曲线的渐近线方程 双曲线的性质,求双曲线的渐近线方程已知F1,F2是双曲线(x^2/a^2)-(y^2/b^2)=1(a>0,b>0),过F2作垂直于x轴的直线交双曲线于点P,且角F1PF2=60度,求双曲线的渐近线方程